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Abstract

Activity recognition research in computer vision and pervasive computing has made

a remarkable trajectory from distinguishing full-body motion patterns to recognizing

complex activities. Manipulation activities as occurring in food preparation are particularly

challenging to recognize, as they involve many different objects, non-unique task orders and

are subject to personal idiosyncrasies. Video data and data from embedded accelerometers

provide complementary information, which motivates an investigation of effective methods

for fusing these sensor modalities.

This thesis proposes a method for multi-modal recognition of manipulation activities

that combines accelerometer data and video at multiple stages of the recognition pipeline.

A method for accelerometer tracking is introduced that provides for each accelerometer-

equipped object a location estimate in the camera view by identifying a point trajectory

that matches well the accelerometer data. It is argued that associating accelerometer

data with locations in the video provides a key link for modelling interactions between

accelerometer-equipped objects and other visual entities in the scene. Estimates of ac-

celerometer locations and their visual displacements are used to extract two new types

of features: (i) Reference Tracklet Statistics characterizes statistical properties of an ac-

celerometer’s visual trajectory, and (ii) RETLETS, a feature representation that encodes

relative motion, uses an accelerometer’s visual trajectory as a reference frame for dense

tracklets. In comparison to a traditional sensor fusion approach where features are extracted

from each sensor-type independently and concatenated for classification, it is shown that



xiv

combining RETLETS and Reference Tracklet Statistics with those sensor-specific features

performs considerably better. Specifically addressing scenarios in which a recognition

system would be primarily used by a single person (e.g., cognitive situational support),

this thesis investigates three methods for adapting activity models to a target user based on

user-specific training data. Via randomized control trials it is shown that these methods

indeed learn user idiosyncrasies.

All proposed methods are evaluated on two new challenging datasets of food preparation

activities that have been made publicly available. Both datasets feature a novel combination

of video and accelerometers attached to objects. The Accelerometer Localization dataset

is the first publicly available dataset that enables quantitative evaluation of accelerometer

tracking algorithms. The 50 Salads dataset contains 50 sequences of people preparing

mixed salads with detailed activity annotations.
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Chapter 1
Introduction
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1.1 Complex Manipulation Activities

Activity recognition research in computer vision has made a remarkable trajectory from

distinguishing full-body motion patterns like running, boxing and waving [88] through

detecting actions of interest in movies [55, 56, 59] to reasoning about complex human-

human [85] and human-object interactions [5, 32, 84], and tracking through multi-step

processes [39]. In recent years these challenging problems have gained comparable interest

in the ubiquitous computing community [38, 75, 77, 82] but the literature shows few

examples of creative cross-fertilization and of methods for integrated activity recognition

from video and embedded sensors [5, 18, 118]. This thesis argues that a multi-modal

approach - integrating data from multiple sensor types - to recognizing complex activities

can be highly beneficial if the complementary information provided by different sensor

types is encoded effectively.

The terms action, activity, manipulation activity and complex manipulation activity are

used extensively throughout this thesis. Therefore, it makes sense to define these terms

informally here and use them consistently later on. The term action refers to the process

of executing a bodily movement within a short (sub-second) period of time, e.g. running,

waving or grabbing. Although there might be objects involved in executing these actions,

this term exclusively focuses on the performed motion pattern. Activity, on the other

hand, describes a short sequence of actions. For example, the activity placing a tea-bag

into a cup involves grabbing a tea-bag, moving the tea-bag over a cup, and releasing the

tea-bag into a cup. An activity that involves a person’s interaction with one or more objects

with the intent of manipulating them is referred to as a manipulation activity. Cutting a

tomato into pieces and placing a tea-bag into a cup are examples of manipulation activities,

whereas sitting down on a chair is not. A sequence of manipulation activities is called

complex manipulation activity. The order of individual activities in a complex activity is

not necessarily deterministic. One example of a complex manipulation activity would be

preparing a toasted sandwich, as it involves activities such as toasting bread, spreading

butter on a slice of bread, placing a slice of ham on top, and so on.
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In a wide range of application areas the benefit of accurate activity recognition outweighs

the cost of creating a sensor-rich environment. This includes, for example, augmented

reality [37], cognitive situational support [38, 39], supervision of assembly tasks [5], and

skill assessment [81]. In these contexts, manipulation activities involve a potentially large

number of objects, complex interactions between hands, tools and manipulated objects,

and constrained but non-unique orderings in which interactions may be performed.

The challenges of recognizing complex manipulation activities are well illustrated by

food preparation tasks. Kitchen utensils are hard to recognize and track visually as objects

are often partially occluded and object categories are defined in terms of affordances.

While ingredients may initially be discriminated based on visual appearance, manipulation

activities such as peeling, cutting, mixing and frying severely change their colour, shape and

texture, even forming new materials from multiple components. Food preparation activities

usually involve transforming one or more ingredients into a target state without specifying

a particular technique or utensil that has to be used. As a potentially wide range of

techniques and utensils may be employed for each activity, achieving good generalization

is particularly challenging. Additionally, many individuals maintain unique sets of recipes

and personal variations of common recipes. These characteristics, among others, make

it hard to automatically recognize and track through food preparation activities. Despite

some characteristics that are unique to processing food, many of the challenges faced

in this context re-occur in the context of tracking and guiding a person through other

complex processes such as manufacturing and assembly tasks. The study of recognizing

food preparation activities has therefore huge potential to push the boundaries of automatic

activity recognition in general.

1.2 Sensor Selection and Sensor Fusion

Recognition and tracking of objects from video under illumination changes, occlusion,

intra-class appearance variations and object deformations is challenging. In contrast,
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embedded sensors such as accelerometers attached to objects provide explicit information

about object identity and object motion by design. Accelerometers capture subtleties in

object motion and continuous miniaturisation allows them to be inconspicuously integrated

into a wide variety of objects. However, reasoning about interactions between objects

solely based on accelerometers requires that each participating object has a sensor attached

to it, considerably limiting the applicability of such an approach. It is not practical to equip

objects such as unpackaged food items with sensors or tags. On the other hand, visual

data effectively capture spatial relations and interactions between visual entities, assuming

that they can be identified and localized. The complementarity of these sensing modalities

suggests that methods for effectively combining visual data with data from embedded

accelerometers have the potential to significantly improve recognition of manipulation

activities and, importantly, to increase the range of activities that recognition systems can

address.

While computer vision may be very helpful to recognize visibly pronounced gestures

and untaggable objects, Pham et al. [76] have shown that accelerometers may successfully

be used to recognize more precise and localized hand movements (e.g. cutting actions).

Depending on the application, feature extraction algorithms in computer vision tend to

be noisy and error prone in realistic scenarios, and extracted features do not represent

semantic concepts (e.g. interest points). Localizing accelerometers in the camera field of

view could provide means by which essential information about an action may be filtered,

focusing attention and facilitating suppression of background clutter. Additionally, the

location of an accelerometer provides a valid reference point for modeling geometric

constellations in actions, facilitating translation invariant recognition of interactions.

Previous work on activity recognition also incorporated radio-frequency identification

(RFID) readings alongside vision systems or accelerometers. Hoey et al. [38] used RFID

readers placed at strategic locations in order to recognize when an object is placed at or

removed from a particular location (e.g. a tray). Wu et al. [118] attached an RFID reader

to a bracelet in order to detect hand-object interactions. Object detection based on RFID
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does not require object appearance models or methods for handling visual occlusion, but

RFID readings are subject to other kinds of noise. Hoey et al. [38] noted that the range

of an RFID reader was too short to reliably detect whether an object is placed on a tray,

whereas Wu et al. [118] reported that an RFID reader often detected false hand-object

interactions when a hand passed close to an object while grabbing something else.

In the ubiquitous computing research community, video is mainly recorded to enable

manual annotation of the actual sensor data from, e.g., RFID readers, accelerometers and

gyroscopes [61, 98]. Often video is not recognized as a valid source of information due to

the widespread belief that cameras are too intrusive and would not be acceptable. Over the

past few years the number of cameras per household has grown exponentially through the

emergence of smart-phones, tablets, and video-based input devices such as Kinect. While

users may object to the idea of another person watching them via CCTV-like installations

in their homes they are often accepting of visual sensors as part of a closed system that

enables desirable services.

In the computer vision community some multi-modal activity recognition datasets have

been released including synchronized video, RFID, audio and IMU data (e.g., [5, 18]).

Interestingly, in all of these datasets, accelerometers and gyroscopes have been attached

to the subject’s body, which is often practically inconvenient. In pervasive intelligent

environments it is therefore common practice to embed sensors in objects involved in an

interaction instead [13].

1.3 A Motivating Application: Cognitive Situational Sup-

port

A particularly promising application for recognizing manipulation activities with a strong

potential for social impact is cognitive situational support. As demographic projections

suggest, the aging society we live in today imposes new challenges on medical and social

care [78]. The ratio of people needing support to those who can provide it continues to



6

increase. Therefore, the role of technology to develop new assistive solutions gains in

importance.

Approximately 35.6 million people worldwide live with dementia and the total social

costs were estimated at $604 billion in 2010 [117]. This disease mainly affects older

people and the likelihood of developing dementia roughly doubles every five years after

age 65. Causing problems in memory, planning and decision making, people with severe

dementia may often perform activities of daily living (ADL) such as dressing, washing,

toileting, eating and kitchen tasks only with assistance from a professional or family

carer. Neuropsychologists have shown a strong correlation between dementia severity and

the ability to perform ADL tasks [30]. Regarding the person’s well-being, the constant

dependency on a caregiver in everyday activities is associated with a diminished quality of

life, poor self-esteem, anxiety and social isolation [11].

One way in which technology can help people with cognitive impairments is through

situational support systems. A situational support system recognizes or tracks a person’s

activities, identifies situations where help is needed and provides support by issuing

guiding prompts to the user. Such a system could guide people with, e.g., dementia through

activities of daily living and thereby enable them to live more independently of carers.

Researchers particularly focusing on the personal consequences of dementia have been

able to identify specific problems arising with ADL tasks [115, 116] and have successfully

designed first prototypes of situational support systems for cognitively impaired people.

Hoey et al. [40], for example, developed a system guiding a person through the task of

hand washing and proposed a general specification method for support systems based on

this approach, illustrated on the preparation of a cup of tea [39]. Their method successfully

integrates many desirable aspects for a situational support system: it incorporates multiple

types of sensors, multiple types of prompting actions, models cognitive abilities and the

user’s attitude, and provides to the best of its knowledge in each situation the optimal

guiding prompt. Nevertheless, there are some shortcomings to be pointed out. Only a

small portion of the specification process is performed automatically and the system needs
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to be tailored to each complex activity individually. Additionally, solving for the optimal

prompting strategy is very time-consuming. It is unclear whether this approach would be

feasible for more complex activities such as make lasagne, and whether it would scale well

to recognizing a wide range of tasks. A higher degree of automation and flexibility of the

prompting system would be desirable. It seems sensible to decouple the user attitude model

and prompting actions from the core activity recognition model, such that the recognition

model has a high flexibility and may be plugged into the prompting system. The resulting

model should be capable of recognizing multiple complex activities without the need for

time consuming system specifications for each new complex activity and should be easily

adaptable to new environments (e.g. the kitchen in a particular person’s home).

Although first prototypical support systems exist, there are still many challenges to

overcome. For example, these systems need to be easily adaptable to a particular person’s

home and cognitive capabilities for easy deployment. While prototypes of situational

support systems are able to track and guide a cognitively impaired person through some

activities of daily living (ADL) using embedded sensors, food preparation activities appear

to be particularly challenging. Such systems would be deployed in a person’s home and

continuously gather data from the same person, so adaptation to the user’s idiosyncrasies

is desirable. Finally, they would need to be able to robustly track and guide through a wide

range of activities to be a reasonable alternative to a personal caregiver.

In a situational support system, actions must be recognized online, imposing strong

constraints on computational cost and requiring temporal segmentation of activities, a hard

problem in itself. Modelling and tracking activities at a detailed level and issuing sensible

prompts to the user are further open research problems.

1.4 Goals and Contributions

This thesis investigates the problem of recognizing manipulation activities during food

preparation from video and accelerometers attached to objects. Embedded accelerometers
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and video provide complementary information that is useful for activity recognition.

Traditionally, features from different sensor modalities are either combined for classi-

fication by concatenating feature vectors (early fusion), by combining semantic concept

classifiers (mid-level fusion), or by merging classification results obtained separately from

each modality (late fusion). This thesis investigates the hypothesis that extracting fea-

tures from each sensor modality independently discards important cross-modal relational

properties. Features modelling cross-modal relations, which relate data captured by ac-

celerometers to information in the video, provide key information for modelling complex

interactions between accelerometer-equipped objects and other visual entities in the scene.

It will be shown that relational features can be used to build activity recognition systems

that are more robust to variations in activity execution.

In order to reason about complex interactions from video and accelerometer data it is

useful to relate the motion captured by an accelerometer to locations in the image space.

This thesis proposes an accelerometer localization and tracking algorithm that enables

tracking of accelerometer-equipped objects in the visual field of a camera without relying

on their visual appearance. For recognizing manipulation activities, a family of feature

descriptors is proposed that encodes visual interactions by describing properties of local

visual features with respect to the location and motion of tracked objects. This approach is

applicable to any scenario in which only a subset of all objects of interest can be tracked

reliably, regardless of the sensor modality used to acquire object tracks. One example

of this approach is discussed in detail in which dense tracklets are described relative to

reference tracklets in histograms of RElative TrackLETS (RETLETS). Each histogram

captures visual motion relative to a reference object. The accelerometer localization

algorithm is applied to acquire trajectories of accelerometer-equipped objects that serve

as reference tracklets for RETLETS. The effectiveness of this method for multi-modal

activity recognition is evaluated on the 50 Salads dataset, a novel dataset of food preparation

activities that includes synchronized data from RGB-D video and accelerometers attached

to objects. The dataset captures people preparing mixed salads where activities correspond
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to individual tasks of the recipe and accelerometers are attached to kitchen objects.

This thesis focuses on motion features for three reasons. Firstly, the performance

of accelerometer and visual motion descriptors for activity recognition are compared

quantitatively. This experiment can inform future decisions on sensor selection, how these

sensors are used, and where they are placed. Secondly, as accelerometer localization and

dense tracklets are both based on dense optical flow, the proposed multi-modal features can

be extracted with little additional computational cost. Thirdly, recognition performance

based on appearance would be strongly biased. As the manipulation of ingredients severely

changes their appearance, appearance-based activity models likely capture comparably

stable appearance properties of kitchen utensils. Unless a dataset with a wide variety of

bowls, pots, pans, dispensers, knifes, spoons etc. is recorded, which is hard to do for

practical reasons, appearance-based activity models are likely to learn the appearance

of particular object instances, and their generalization performance would be difficult to

assess reliably.

As food preparation activities are subject to large inter-person variability, this thesis

also investigates methods for adapting an activity recognition system to a particular user.

Methods for user-adaptation are viable in scenarios where a recognition system is primarily

used by a single person (e.g., in cognitive situational support), and could eventually enable

tracking and assessment of a person’s behavior change over time.

In summary, the contributions of this thesis are:

• An algorithm for accelerometer localization and tracking.

• A family of feature descriptors encoding relational properties between tracked

objects and local visual features.

• A method for online activity recognition based on multi-modal features from video

and accelerometer data.

• A study of methods for user-adaptive activity recognition.
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• A comparative evaluation of motion features from accelerometers and video for

activity recognition.

Additionally, the following resources have been made available to the research community

as part of this PhD project:

• 50 Salads: a carefully designed and fully annotated dataset of food preparation

activities that includes RGB-D video and accelerometers attached to objects.

• A dataset for quantitative evaluation of accelerometer localization algorithms that

includes annotations of ground truth accelerometer locations in every frame of a

video.

1.5 Thesis Structure

Chapter 2 reviews relevant related work on visual and accelerometer-based activity

recognition, and methods for fusing vision with inertial sensors and RFID.

Chapter 3 proposes an algorithm for localizing and tracking accelerometers in the

view of a stationary camera. The localization algorithm matches acceleration estimates

along visual point trajectories to accelerometer data, and this chapter discusses alternative

methods for acquiring point trajectories and for measuring their similarity to accelerometer

data.

Chapter 4 details the proposed method for multi-modal activity recognition. The family

of object-generic relational histograms is formalized, and one instance from this family

- RETLETS - is introduced. This type of feature is combined and compared with other

feature types prior to classification. This chapter also describes these other feature types

and discusses two methods for classification.
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Chapter 5 investigates three methods for supervised adaptation of an activity recognition

model to a target user: classifier combination, joint SVM training and weighted K-Nearest-

Neighbour.

Chapter 6 introduces the 50 Salads dataset and a dataset for quantitative evaluation of

accelerometer tracking algorithms.

Chapter 7 reports evaluation results on the proposed method for accelerometer track-

ing, a comparison of visual and accelerometer-derived features, multi-modal activity

recognition and user-adaptive classification.

Chapter 8 summarizes the contributions and findings of this thesis, and offers recom-

mendations for future research.
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Chapter 2
Related Work

This chapter reviews related work on visual and accelerometer-derived features for activity

recognition, and methods for fusing vision with accelerometers and RFID. Related work

that is only relevant to individual aspects of this thesis is reviewed in the respective later

chapters. The literature reviewed in this chapter is organized into sections according

to sensor-modality used. Methods specifically addressing recognition of manipulation

activities or food preparation are reviewed in all sections.
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2.1 Scope

There is a large body of work on recognition of human behavior applied in a wide range of

contexts including surveillance [74], human-computer interaction [92], domestic care [39]

and sports [28, 68, 119]. In these contexts the focus lies on different aspects of human

behavior such as the body motion of a single person [88], human-human interaction [68],

crowd behavior [127], and human-object interaction [20]. A broad review of methods

across this wide range of aspects and application areas is outside the scope of this thesis.

As this thesis addresses the problem of recognizing manipulation activities, this section

focuses specifically on relevant methods for human-object interaction. For a more general

introduction and wider coverage of methods the review papers [1, 47, 79, 106, 109]

are recommended. There is also a large body of work on modelling the sequential or

hierarchical structure of complex activities, activities, actions and events including methods

using variants of hidden Markov models (HMMs) [8, 90, 119], stochastic context-sensitive

grammars [45, 74, 93] and statistical relational learning [68, 69, 104]. While temporal

structure modelling is certainly beneficial for recognizing complex manipulation actions,

this thesis and the related work reviewed here concentrates on feature representations and

sensor-fusion.

2.2 Visual Features for Activity Recognition

Features for visual activity recognition can be broadly categorized into object-based

[2, 5, 38] and generic [54, 66, 67, 110] descriptors.

Object-based Methods for Activity Recognition Object-based methods identify and

track objects in the scene and recognize activities by reasoning about spatiotemporal

relationships between them (high-level features). This approach usually assumes that all

objects of interest can be detected and tracked reliably. The necessity of training reliable

object detectors for all relevant objects is a major practical limitation; issues include
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dealing with detector uncertainty, modelling hard-to-detect deformable objects, and scaling

to large numbers of different objects.

In the context of egocentric activities, Fathi et al. [21] devised a method for learning

object detectors from weak (image-level) annotations in a multiple instance learning (MIL)

framework. The scene is segmented into super-pixel regions which are tracked over

time, and background regions are discarded prior to object category learning using image-

stitching and change-detection techniques. Using these weakly learned object detectors,

Fathi et al. [20] proposed a method for activity recognition in a probabilistic graphical

model where nodes represent super-pixel regions, object labels, activities and a complex

activity. Inference is performed cyclically: after an inference pass from super-pixel features

to the complex activity node, distributions over activities are updated given the distribution

over the ongoing complex activity, and object labels are updated based on the distribution

over ongoing activities. Bansal et al. [3] propose to learn object models using active

contours for segmentation and features describing each contour’s shape. In every video

frame one binary feature per object is extracted that indicates whether an object is in use

based on the detection of a hand approaching the object, the object is moving, or the object

is changing its appearance. Each frame is classified based on in-use features and features

extracted from tracked hands in a HMM with emission probabilities found using support

vector machines. Lei et al. [57] proposed a similar method that models objects via local

colour, texture, and depth descriptors of foreground regions in RGB-D video. Hands are

tracked using skin colour. Activities are recognized using hand-object interaction events

and features of hand trajectories. While the results reported by Fathi et al. [21], Bansal et

al. [3], and Lei et al. [57] are promising, their object detectors are trained on the specific

object instances that are used at test time. Therefore, it is questionable how well these

methods generalize; most likely, methods for adapting object models to new instances

from the same class are required if a system is to be pre-trained and deployed into, e.g.,

a person’s home. Non-probabilistic event detections at early stages of the recognition

pipeline (such as in [3, 57]) are problematic as it is usually hard to recover from detection
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errors at later stages.

Generic Features for Activity Recognition: Generic descriptors represent video as

sets of local low-level features [54, 110] or higher-order statistics over those (mid-level

features) [66], without making strong assumptions about the presence of specific objects.

These methods have in common that local features are described relative to the image’s

frame of reference. Features are commonly extracted at spatio-temporal interest points

[54, 55], at locations on a regular grid [112], or along fixed length point trajectories

(tracklets) [110], and aggregated into histograms over spatio-temporal windows (bags-of-

visual-words). In comparison to features extracted at spatio-temporal interest points [54],

dense tracklets have shown superior performance on several standard action recognition

datasets [110, 112], highlighting their discriminative power. Additional local appearance

and motion features extracted along dense tracklets also outperformed the same descriptors

extracted densely on a spatio-temporal grid [110] suggesting that they are more stable

under motion and appearance variations. One challenge for action recognition based on

tracklets is to be robust against unrelated motion such as camera motion. This problem has

been addressed recently by Wang and Schmidt for camera motion [111] and by Bilinski et

al. for unrelated body motion [6].

Several improvements over the bag-of-words representation have been proposed, in-

cluding methods for soft-assignment (such as sparse coding) [113], supervised dictionary

learning [53] and Fisher vectors [73]. In order to better capture the spatio-temporal struc-

ture of local features in videos, descriptors encoding second-order statistics have been

proposed [66, 86]. As the number of relations between codewords grows exponentially

with codebook size and with the number of discrete relational predicates, the main chal-

lenges are to estimate the distributions over relations reliably and to describe discriminative

higher-order statistics in a compact form. Taking a radical approach to this problem,

Savarese et al. [86] proposed a descriptor for pair-wise relations of codewords whose size

is independent of the size of the codebook. For each pair of codewords, co-occurrence
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statistics are estimated in multiple concentric spatio-temporal cuboids. Similar to bag-of-

visual-words, these features called correlatons are are clustered to build a codebook of

correlatons during training. Correlatons from each video are aggregated into histograms

essentially discarding information about the identity of the visual words whose pairwise

relation correlatons represent.

On a dataset of food preparation activities, Rohrbach et al. [83] compared features

from body-poses and local features along dense tracklets [110], which they refer to as

holistic features. Evaluation results suggest body-pose is rather indiscriminative for food

preparation activities as holistic features performed comparably well (49.4% precision

at 44.8% recall compared to 28.6% precision at 28.7% recall with body-pose features),

but leave substantial room for improvement. Kuehne et al. [52] reported similarly poor

performance using HOG/HOF [55] features in a sequential inference framework that

involves HMMs and context-free grammars on their Breakfast dataset.

2.3 Activity Recognition from Embedded Sensors

Inertial sensors have been used for several pervasive computing applications including

self-localization [31, 41], action recognition [75, 76] and skill assessment [35]. Whereas

carefully engineering or learning discriminative features are research foci in the computer

vision community, activity recognition from accelerometers commonly involves standard

statistical features in the temporal [75] or frequency domain [46], and string-matching

techniques applied to raw data [60]. For an overview of features proposed for accelerometer-

based activity recognition, the interested reader is referred to the survey by Figo et al. [23].

An exception is the recent work of Plötz et al. [77] in which deep belief networks were

used for feature learning.

Recognition of complex manipulation activities such as those involved in kitchen tasks

from embedded sensors alone appears to require the environment to be highly instrumented.
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For example, the Ambient Kitchen [72] in CultureLab1 at Newcastle University is equipped

with RFID readers and tags associated with movable objects, cameras, accelerometers

attached to kitchen objects, cupboard doors and utensils, and pressure sensitive flooring.

Based on sensors such as these the wider research community has developed some methods

for recognizing manipulation activities of which a selection are reviewed here.

Lukovicz et al. [63] modelled workshop actions such as filing, drilling and screwing

with hidden Markov models using the raw accelerometer data as emissions. They reported

near-perfect recognition accuracy on segmented activities and mixed results ranging from

83% precision at 56% recall obtained for screwing to 100% correct for, e.g., filing on an

activity detection task in unsegmented sequences.

Pham et al. [76] developed a method for recognizing food preparation actions such

as chopping, peeling, stirring and scooping using dynamic time warping (DTW) on raw

accelerometer data from sensors embedded in knifes and spoons. Evaluation was performed

on a real world dataset including 20 people performing 10 actions involved in preparing

salads and sandwiches. On this dataset the proposed method achieved an average precision

of about 92% with about 92% recall. These results are good considering the inter-person

and intra-action variations included in this dataset. The promising results suggest that

the proposed method may be very useful to recognize actions from raw sensor data in a

complex activity recognition system.

Rather than selecting features from accelerometer data depending on the target ap-

plication, Hammerla et al. [34] proposed a generic feature representation that showed

state-of-the-art performance on six datasets covering physical activities, daily living activ-

ities, and gestures at the workplace. The empirical cumulative density function (ECDF)

is estimated from each axis of raw accelerometer data over a fixed temporal window.

The function values at a fixed number of equidistant locations along the inverse of the

ECDF (the quantile function) form the feature descriptor This representation essentially

characterizes the shape of the ECDF non-parametrically while avoiding issues of over- and

1http://www.ncl.ac.uk/culturelab/
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under-sampling commonly observed with histograms.

Hoey et al. [39] proposed a method for the specification of automatic prompting systems

that incorporates an activity hierarchy to reason about activities at multiple levels of

granularity and a mechanism for prompting a subject when help is needed. They illustrated

their approach on the task of making a cup of tea. A complex activity is specified in terms

of goals (sub-tasks) and behaviors (activities a person needs to perform in order to reach a

goal, e.g. open the sugar container in order to have sugar in a cup of tea). Subsequently,

cognitive abilities necessary for the specific behaviors are identified. Sensors are selected

to detect all states of involved objects that need to be recognized and the reliabilities of

these sensors are determined. These specifications are semi-automatically converted into

a separate partially observable Markov decision process (POMDP) [12] for each goal.

Each goal is associated with a set of preconditions, which allows for defining a partial

ordering of goals. A simple controlling policy switches between POMDPs according to

these preconditions whenever a goal is reached or a sensor measurement contradicts the

currently active goal. In a different context, Hoey et al. [40] used POMDPs to guide a

person through the task of hand-washing with a camera mounted above a sink.

2.4 Fusing Vision with Inertial Sensors and RFID

Fusing vision with other sensor modalities has previously been investigated for tasks

including activity recognition [5, 118], people tracking [41] and object tracking [96].

Behera et al. [5] recognized assembly tasks by concatenating histograms of visual and

inertial sensor features in an early fusion approach. Specifically, pairwise distances and

changes of distance between objects recognized from a body-worn camera were encoded

in a histogram as were pairwise body-part relations estimated from inertial data. Their

experimental results confirmed that visual features and features from inertial data were

complementary as recognition performance observed with a combination of these features

was considerably higher than using either feature type independently. Recognition of
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complex kitchen activities has been addressed by Wu et al. in [118]. Complex activities

such as make coffee, make salad and pack lunch are described in terms of the set of

objects involved in each task. Observations from an RFID reader in a bracelet attached

to the subject’s arm and from a video camera are used in a Dynamic Bayesian Network

(DBN) [50] to infer manipulated objects and performed complex activities. Visual object

representations are modeled as bags of SIFT features and are trained using RFID readings

to infer object labels. Using learned visual object models and active RFID readings, the

authors report recognition rates of 73% for complex activities and 71% for objects on

a dataset including 16 complex activities and 33 objects. The authors also experiment

with using RFID readings only to train the model and perform recognition exclusively

based on the learned visual representations. Unfortunately, they present test results of

this approach only on the same data as used for training. Although complex kitchen

activities are recognized, the applicability of this method in a situated support system is

very limited. In order to guide a cognitively impaired person through a complex activity

such as preparing a sandwich it is essential for the system to know which particular activity

and action the subject is currently trying to perform. While knowledge about the identity of

objects involved might be discriminative enough to distinguish multiple complex activities,

differences between food preparation activities on a lower level are more subtle. A spoon,

for example, can be used for stirring, scooping and scraping, and knowledge about the

motion of the spoon is necessary to distinguish these actions.

2.5 Discussion

Methods for visual activity recognition are particularly appealing as they do not require

objects or people to be equipped with sensors. While methods that reason about inter-

actions of objects with each other and with hands showed good results on recognizing

manipulation activities, training visual object detectors is challenging and acquiring train-

ing data of labeled object examples is costly and time-consuming. Generic local features
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have the advantage that they are applicable to a wide range of contexts, but have shown

poor performance on recognizing manipulation activities. Accelerometer data seem to

better capture the subtleties in motion that discriminate manipulation activities, but lack

information on interactions between accelerometer-equipped objects and objects that are

not equipped with sensors. Methods for combining features extracted from video and

accelerometers have shown promising results, which motivate an investigation of more

effective sensor fusion approaches. Associating data captured by accelerometers with

locations in the video, as proposed in this thesis, is key to developing feature descriptors

that model interactions between accelerometers and other entities observed in the video.

Capturing properties of visual entities that are not equipped with sensors through generic

local features and encoding relational properties between accelerometer-equipped objects

and local features has the potential to combine the advantages of both sensor domains

while avoiding their respective disadvantages.
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Chapter 3
Accelerometer Localization and Tracking

This thesis investigates multi-modal activity recognition by combining information from

different sensor types during feature extraction. In order to combine data from acceler-

ometers and video, it would be useful to associate accelerometers with locations in the

camera’s frame of reference. This chapter proposes one method for localizing and tracking

accelerometers in video.

The proposed method utilises acceleration data captured by accelerometers and visual

motion estimated from video data. Because it does not rely on the visual appearance of

accelerometer equipped objects, this method is largely agnostic to the objects to which

accelerometers are attached or in which they are embedded; it can be used to track new

objects without the need for reconfiguration.
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Figure 3.1: Accelerometer Localization. By measuring similarity of accelerations along
trajectories of point features (colored dots) with accelerometer data (black indicates weak-
est, red indicates strongest similarity), the algorithm estimates the accelerometer location
(red circle). A red cross marks the ground-truth.

3.1 Background

Accelerometers are becoming increasingly ubiquitous (through, e.g., smart phones, smart

watches, tablets and specialized fitness devices) and there is a growing interest in fusing

accelerometer data with visual data. Combining these sensor types may have strong

potential as they provide complementary information. While accelerometers capture

subtleties in the movement of the device, computer vision may, for example, put this

information into spatial context and into relation with other entities.

Localizing an accelerometer in the visual field of a camera has a wide range of applic-

ations beyond multi-modal activity recognition. For example, detecting and localizing
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accelerometers embedded into personal devices in the camera view may reveal a per-

son’s identity, which can be useful for collaborative table-top interactions, personalized

information delivery and cross-device synchronization.

This chapter proposes an accelerometer localization pipeline that is compatible with

multiple techniques for estimating visual trajectories from video data. Here two methods

are considered, namely trajectories from sparse optical flow (KLT) [62] and trajectories

sampled on a regular grid from a dense optical flow field [19]. An incremental similarity

measure for matching visual trajectories with accelerometer data is defined that is easy

to implement and fast to compute. The output of the algorithm proposed in this chapter

is illustrated on an example video frame in Fig. 3.1. The algorithm assigns a similarity

score to each hypothesized visual trajectory and estimates an accelerometer’s location as

the location of the best matching trajectory in the latest frame.

In the remainder of this section the main challenges for localizing and tracking acceler-

ometers in video are discussed and relevant related work is reviewed.

3.1.1 Challenges

The general problem of fusing visual data with accelerometer data and some potential solu-

tions are discussed in detail by Corke et al [15]. Here, the key challenges for accelerometer

localization and tracking are highlighted that motivate algorithm design decisions made in

subsequent sections.

Occlusion: Accelerometers are usually visually occluded. An accelerometer may be

occluded by the object it is attached to or embedded into, in which case the motion observed

at the visible location of the object is likely to be similar to the motion captured by the

accelerometer. It may, however, also be occluded by a different visual entity in which

case the visual motion at the accelerometer’s location and the accelerometer’s motion

projected in the image plane are likely to differ. In the sensor setup considered in this

thesis accelerometers are embedded into kitchen utensils to unobtrusively capture utensil
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movements. While for some utensils accelerometers are embedded in their handles, for

others the sensors are attached in locations that are not necessarily close to a person’s

hand (e.g., on the rim of a bowl). Because of these frequent and diverse occlusions, a

localization algorithm that relies on the visual appearance of the accelerometer or of the

enclosing device is expected to be unreliable and would require some reconfiguration or

re-training for each new device. The method presented in this chapter proposes therefore

to extract local accelerations from video, which are subsequently matched to data captured

by an accelerometer.

Gravity: An accelerometer measures proper acceleration, that is acceleration relative to

free-fall. If such a device rests on the ground it measures acceleration due to the mechanical

force from the ground which is proportional to gravity g but points in the opposite direction.

Coordinate acceleration, on the other hand, describes acceleration relative to a coordinate

system. In this case a resting object has zero acceleration. Accelerations along trajectories

extracted from video for example represent coordinate accelerations relative to the 3D

coordinate system attached to the camera. In order to compare accelerations from vision

and accelerometer data it is useful to convert visually estimated accelerations into proper

accelerations. The gravity vector, which is necessary to perform this conversion, is

generally unknown in the 3D coordinate system attached to the camera. This chapter

proposes to estimate the direction of gravity from annotated depth maps from an RGB-D

camera. This estimate is subsequently used to transform visual acceleration estimates to

proper accelerations.

Accelerometer’s local coordinate system: Accelerometers capture tri-axial transla-

tional acceleration with respect to a local reference frame; in general an accelerometer’s

orientation is unknown and changes over time, making alignment with the camera’s frame

of reference problematic. As accelerometers measure only translational and not angular

acceleration it is infeasible to calibrate and subsequently track their relative orientation.

A sensor device containing 3 orthogonal accelerometers and 3 orthogonal gyroscopes,
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providing acceleration information in all six degrees of freedom, would therefore facilitate

the fusion task. The lack of knowledge about an accelerometer’s orientation relative to the

camera makes it difficult to match visual acceleration estimates with accelerometer data. A

simple work-around employed in this chapter is to only match acceleration norms. While

matching the norms of acceleration vectors is orientation invariant, a substantial portion of

information that could be valuable for matching is discarded.

Synchronization: Although camera frames and accelerometer readings may be timestamped,

we may not generally assume that their clocks are synchronized. Similarly, if timestamps

are generated by a server receiving new data from the client devices (cameras and ac-

celerometers), the timestamps are synchronized, but they do not reflect latencies in data

transmission.

Different sensor frequencies: Different sensor frequencies of accelerometers and cam-

eras impose another problem as accelerometer frames and images are not acquired at the

same time, even if the streams are synchronized. For example, there may be multiple

samples of accelerometer data associated with the interval between subsequent video

frames. As the local coordinate systems of accelerometers may change in between time

instances at which accelerometer measurements are taken, simple integration over time

is a suboptimal solution to data aggregation for comparison with camera observations.

A related problem is that accelerometers measure instantaneous acceleration, whereas

acceleration estimated from consecutive frames represents mean acceleration over the time

duration between frames. The expected estimation error, i.e. the difference between the

visually estimated acceleration and instantaneously measured acceleration, is proportional

to the mean gradient magnitude of the instantaneous acceleration between subsequent

frames. Therefore, estimation errors are expected to be larger when an accelerometer

is moving strongly than when it is stationary. When designing a similarity measure

there is a trade-off to be made between falsely penalizing expected estimation errors and

under-representing true mismatches.
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3.1.2 Related Work

Inertial sensor localization in a camera’s field of view is primarily being addressed in

the context of tracking people [64, 91, 102]. For example, Teixeira et al. [102] used

magnetometers and accelerometers in mobile phones to identify and localize multiple

people tracked from CCTV cameras. Sensor measurements from phones carried by the

subjects were associated with tracked body positions in a hidden Markov model for

localization and to resolve ambiguities in visual tracks. This approach makes strong

assumptions about the appearance of the object (person) that is to be tracked. Shigeta et

al. [91] make similar assumptions localizing an accelerometer using normalized cross-

correlation (NCC) of accelerometer data with trajectories of a jacket and a hand. Maki et

al. [64] proposed point feature trajectories in combination with NCC for accelerometer

localization without prior knowledge of object appearance. Unfortunately, those authors did

not present quantitative data on localization performance. The method for accelerometer

localization presented in this chapter has been previously published in [95]. As an extension

to [95], this chapter proposes methods for long-term accelerometer tracking in Section

3.6.
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3.2 Localization Pipeline

The proposed method for accelerometer localisation involves

• generating trajectory hypotheses in videos,

• estimating local visual accelerations along these trajectories and

• matching visual acceleration estimates to data captured by accelerometers.

The flow from raw input data to location estimates is illustrated in Fig. 3.2.

The visual data, i.e. the colour frames and depth maps, are geometrically and temporally

aligned such that at each pixel, RGB values and depth is available. The OpenNI SDK1,

which was used to acquire Kinect colour and depth images, provides a method for automatic

geometrical alignment. In practice, there is a small time delay between colour and depth

frames. With depth from structured light the depth measurement for some pixels is invalid.

This is observable at depth discontinuities, at non-opaque or reflective surfaces, and in

areas that lie from the viewpoint of the sensor in the shadow of the projected light pattern.

Colour images were transformed to grayscale prior to processing.

Trajectory hypotheses are generated by sampling and tracking points in the video. The

sampled points are extended to trajectories in order to estimate acceleration for matching

with accelerometer data. This chapter considers generating point trajectories by tracking

either salient features [89] with pyramidal KLT [7] or by tracking points on a regular grid

with dense optical flow [19]. Both techniques are described in Sec. 3.3.

In order to match visual trajectories with accelerometer data, locations in image space

need to be transformed into world coordinates, which requires the camera to be calibrated.

Additionally, sequences of locations need to be differentiated twice to accelerations. In

order to transform coordinate acceleration to proper acceleration, the gravity vector needs

to be estimated in the view of the camera and added to visual acceleration estimates. This

procedure is described in detail in Sec. 3.4.

1OpenNI SDK: http://structure.io/openni

http://structure.io/openni
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Figure 3.2: Accelerometer localization pipeline: Data flow from raw input streams gener-
ated by accelerometers and the camera to location estimates for each accelerometer in the
current video frame.
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The resulting acceleration sequences are not directly comparable to the captured ac-

celerometer data, as the frequencies of the camera and the accelerometers are different.

Therefore, the acceleration data from accelerometers is sub-sampled such that each video

frame is uniquely matched to one sample from each accelerometer.

Once these processing steps are completed a scoring function is applied to create a

similarity map which is used to determine trajectories that best match the accelerometer

data. Similarity scores are computed exhaustively between all current visual trajectories and

all accelerometers. Based on the resulting similarity map between devices and trajectories,

the location of each accelerometer in the current video frame is estimated as the location

of the best matching trajectory in the most recent frame. An example similarity map

representing similarity scores for all trajectory hypotheses is shown in Figures 3.1 and 3.2

with estimated and ground-truth accelerometer locations also marked.

3.3 Generating Hypotheses

Visual localization of accelerometers involves matching accelerometer data to local motion

properties in a video. In order to solve this correspondence problem, acceleration data

need to be extracted from video and compared to data captured from accelerometers.

In this context, visual motion estimation may generally be performed on three levels of

granularity.

At the lowest level, dense optical flow methods may be used to estimate a velocity

for each location in an image from two or more subsequent frames. Using these velocity

estimates to track surface points over time, however, is not advised as tracks produced in

this manner tend to drift away from the locations on objects they are initialized on with

increasing track length and a very large number of tracks is produced, which is associated

with a high computational cost for track correspondence validation.

At the highest level, a track may be extracted from each moving object using standard

object tracking techniques. These models usually make strong assumptions about the
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appearance and geometry of the tracked object. For localizing an accelerometer, however,

we want a model that is not object specific.

Based on these observations, the most promising approach to extracting acceleration

information from visual data seems to be at an intermediate level through the use of point

tracking methods such as KLT [62, 89, 105] or subsequently proposed feature trackers

(e.g. [14, 17, 51, 108, 121]). By considering a relatively small number of points compared

to dense optical flow, the number of location hypotheses and the computational cost

associated with their validation is drastically reduced. In comparison to tracking objects,

point trajectories make no assumptions about the objects’ appearance, providing a high

degree of flexibility and generality. Some methods for extracting point trajectories have

already been successfully applied to action recognition (e.g. [9, 66, 67, 99, 110]). Shigeta

et al. [64] present a first attempt at localizing an accelerometer in a camera field of view

using KLT and normalized cross-correlation (NCC).

The remainder of this section describes two methods for trajectory construction:

sampling the image at salient (highly textured) locations [89], which are tracked over

time using sparse optical flow (pyramidal KLT [7]), and sampling the image on a regular

grid with point locations updated over time using Farnebäck’s dense optical flow algorithm

[19]. While the first method extracts trajectories at feature locations that are expected to be

easily tracked individually, the latter evenly samples the image space and uses a spatially

smooth flow field. Both methods are explained in detail below.

3.3.1 Trajectories from Feature Point Tracking

In this first trajectory construction method trajectories are initialized at keypoint locations,

defined as image locations whose covariance matrix of local image gradients has two large

eigenvalues [89]. Two large eigenvalues in this matrix indicate that the local region around

an image location is highly textured and therefore more likely to be tracked robustly in the

next frame than homogeneous image patches. The smaller eigenvalue of the covariance

matrix is subsequently called cornerness.
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A fixed maximum number of trajectories Nmax
T is maintained. From the first frame

of a video, a trajectory at the image location with highest cornerness is initialized. The

algorithm proceeds by initializing trajectories at additional locations in order of decreasing

cornerness subject to the following constraints.

• The total number of trajectories is not greater than Nmax
T .

• The Euclidean distance of a point to the locations in the current frame of all other

trajectories is greater than a threshold dminI .

• The cornerness of the point is greater than a fixed fraction of the maximum cornerness

value in the current image.

The minimum distance dminI prevents initialization of large numbers of trajectories in a

small area of the image.

For each subsequent frame, currently maintained point features are attempted to be

tracked using pyramidal KLT [7]. All trajectories for which locations have been tracked

successfully in the new frame are updated by appending their respective new locations.

Trajectories that could not be tracked in the current frame are discarded. The set of

trajectories that are tracked successfully to the current frame or that were newly initialized

are referred to as active trajectories. If after an update step there are less than Nmax
T active

trajectories, new trajectories are initialized at keypoint locations subject to the constraints

above.

The implementations for feature extraction as proposed by Shi and Tomasi [89], and

tracking as proposed by Bouguet [7] provided by the OpenCV library [29] were used.

3.3.2 Trajectories from Grid-Sampling and Dense Optical Flow

The second method for constructing trajectories from video initializes trajectories at

locations on a regular grid with horizontal and vertical spacing dG between points. For each

new frame a dense flow field is computed as described by Farnebäck [19] and provided
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by OpenCV [29]. Point feature locations are then updated through shifting previous

locations by the horizontal and vertical flow estimated for their respective positions. In

the case where a newly estimated location lies outside the image region the corresponding

point trajectory is discarded. Otherwise the trajectory is updated by appending the newly

estimated location to its respective location sequence. Point trajectories have variable

length and are extended indefinitely. New trajectories are initialized at grid point locations

whose minimum distance to current locations of active trajectories is greater than dG.

Following this approach the number of tracked points may grow indefinitely as pairwise

distances become diminishingly small. This is avoided by terminating a track if its location

in the most recent frame becomes closer than some threshold τd to another track’s location

and it is younger than that other track (i.e., has been tracked for a smaller number of

frames). The grid spacing dG and the threshold τd provide bounds on the spatial resolution

of maintained location hypotheses.

Figure 3.3 illustrates trajectory hypotheses extracted with sparse feature point tracking

(KLT) and dense optical flow (DOF). Notice that KLT trajectories are clustered in highly

textured locations whereas DOF trajectories densely cover the image. Dense coverage

of the image could be advantageous in situations where accelerometers are occluded by

surfaces that are not highly textured. Due to the dense flow field, DOF trajectories are

also smoother and more robust to false correspondences [110]. These expected advantages

come at the expense of an increased computational cost of estimating a dense flow field.

While the computational cost of KLT is proportional to the number of tracked points, the

cost of DOF is proportional to the number of pixels in the image.

3.4 Transformation to World Coordinates

Two transformations are needed in order to match accelerations estimated along point

trajectories with data captured by accelerometers:

1. Point trajectories in image coordinates need to be transformed into world coordinates
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(a) Trajectories from sparse feature point tracking (KLT)

(b) Trajectories from grid-sampling and dense optical flow (DOF)

Figure 3.3: Comparison of KLT (a) and DOF (b) for trajectory hypothesis construction.
Trajectories are visualized as yellow line sequences corresponding to the last twenty point
displacements and overlaid on top of the most recent frame converted into a gray-level
image. The most recent displacements are shaded brighter than older ones. The green
circles indicate trajectories initialized in the most recent frame. The red, green and blue
crosses indicate the ground-truth locations of three accelerometers.
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(i.e., metric values with the center of the image plane at 0).

2. Gravitational effects in world coordinates need to be simulated to transform coordin-

ate acceleration to proper acceleration (relative to free-fall).

The relationship between image and world coordinates is governed by the distance of

objects from the camera, lens distortion, and the camera’s intrinsic parameters.

Distance from the Camera

Due to perspective projection, acceleration magnitudes depend on the location of points

along trajectories in the normal direction of the camera’s image plane (depth). Two methods

for assigning depth values to pixels are investigated. First, a constant uniform depth for all

pixels in the image is assumed. This configuration may be particularly interesting if depth

data is noisy or unreliable, or if a combined colour and depth sensor is simply unavailable.

Second, the value from the depth map provided by a range sensor is assigned to each pixel

in the colour image. Surprisingly, lower localization accuracy was observed using depth

maps than using a constant fixed depth.

In practical scenarios the depth estimate at some pixels in a frame may become invalid.

This happens for example frequently with cameras that use structured light for constructing

depth maps. If the situation occurs that the depth at the current image location of a point

feature trajectory is invalid, a depth estimate from previous depth values and velocities is

provided. The current depth zt is estimated from the previous depth zt−1, the estimated

velocity vz and the video frame rate fvid with a linear predictor:

zt = zt−1 +
vz
fvid

(3.1)

Note that 3D trajectories could also be constructed from scene flow [107]. However,

estimating dense 3D scene flow is too computationally expensive for online accelerometer

localization [33].
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Lens Distortion and Camera Intrinsic Parameters

Assuming a pinhole camera model, distortion coefficients and intrinsic parameters are

determined as proposed by Brown [10] and Zhang [126], respectively.

The Brown-Conrady [10] model with radial and tangential lens distortions is employed

for determining the intrinsic camera parameters. Let the focal length be f , the dimensions

of the image elements be sx, sy and the principal point be (cx, cy). Then the ideal model

for the projection without distortion of a 3D point (described relative to the camera) onto a

2D surface is given by


x′p

y′p

s

 =


fsx 0 cx

0 fsy cy

0 0 1




x′

y′

z′

 , (3.2)

which is unique up to a scale parameter s. For a given scale parameter the location of a point

projected onto the image is (xp, yp) = (x′p/s, y
′
p/s). Radial distortion with coefficients

k1, k2, k3 and tangential distortion with coefficients p1, p2 transform these locations to

 x

y

 = (1 + k1r
2 + k2r

4 + k3r
6)

 xp

yp

+

 2p1xpyp + p2(r
2 + 2x2p)

p1(r
2 + 2y2p) + 2p2xpyp

 , (3.3)

where r is the point distance from the centre of the image.

Functions provided by OpenCV [29] were used to determine intrinsic parameters from

multiple views of a chessboard pattern. The library also provides functions to estimate

undistorted image locations that were used when transforming image locations into world

coordinates.

Given an undistorted image location x : (x, y), estimated depth z, focal length f ,

imaging element dimensions sx, sy, and principal point (cx, cy), image locations are trans-

formed to world coordinates using (3.4).
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Figure 3.4: Direction of gravity: Three points are marked (red crosses) in the colour image
(left) on a surface perpendicular to gravity, here the work surface. Their locations in the
depth map (right) are used to extract the surface normal, which is assumed to be in the
direction of gravity.

x′ =
(x− cx)z
fsx

y′ =
(y − cy)z
fsy

z′ = z (3.4)

Estimation of Proper Acceleration

Let P ′i : (x′0, . . . ,x
′
t) denote a point trajectory represented as a sequence of locations in

world coordinates, x′j : (x′j, y
′
j, z
′
j). Velocities v′j and accelerations a′j are approximated

using discrete differences v′j = fvid(x
′
j−x′j−1) and a′j = fvid(v

′
j−v′j−1), respectively,

where fvid is the video frame rate. Locations x′j are smoothed over time with a zero-mean

isotropic Gaussian with some small variance to avoid instabilities in the approximation

[80]. Note that estimates v′j and a′j are only available with short, fixed delays due to the

smoothing kernel.

Ideally, one would transform accelerometer data to coordinate acceleration by sub-

tracting acceleration measured due to resisting gravity2, but as accelerometer orientation

relative to the direction of gravity is unknown and changing over time this is not possible.

2This is equivalent to adding acceleration due to gravity.
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Fortunately, acceleration due to gravity can be simulated and subtracted from acceleration

estimated along point trajectories if the direction of gravity in video can be estimated.

While the magnitude of gravity at the earth’s surface is well known3, the direction relative

to the camera’s coordinate system depends on the positioning of the camera.

This chapter proposes to determine the direction of gravity in the camera’s field of view

by estimating surface normals from depth maps. Assuming there is a planar surface in the

scene that is aligned with gravity (e.g., a floor, a ceiling, a work surface or a tabletop) a

normal is estimated pragmatically from a set of at least three manually marked points on

the surface (see Fig. 3.4). The marked points are transformed into world coordinates using

(3.4). Given three such points in world coordinates x′0,x′1,x′2, the direction of gravity is

given by the cross-product of the co-planar vectors s = x′1 − x′0 and t = x′2 − x′0, and

the magnitude follows from standard gravity (3.5).

ĝ = 9.80665
s× t

||s× t||
(3.5)

This result may be refined by sampling the vectors s and t multiple times from a larger

number of marked points and averaging the estimated surface normals. Depending on the

order in which the points have been marked, the estimated direction of gravity may need

to be inverted. The estimated proper acceleration at of a point trajectory at time t is given

by at = a′t + ĝ.

Instead of manually marking points on the work surface, this task could be automated.

For example, a horizontal plane could be fitted to depth data using Random Sample

Consensus (RANSAC) [24]. The estimated plane could be further refined through least-

squares estimation from the set of points that RANSAC identified as inliers.

3Here, standard gravity |g| = 9.80665m/s2 is used.
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3.5 Hypothesis Scoring

3.5.1 Sub-Sampling

Sequences of acceleration estimates along point trajectories Avidt : (avidt−j, . . . , a
vid
t ) are

matched with the sequence of accelerometer data Aacct : (aacct−j, . . . , a
acc
t ). The video frame

rate fvid is usually lower than the accelerometer sampling rate facc. For a one-to-one

association the accelerometer data needs to be sub-sampled. Acceleration as measured

by an accelerometer corresponds to instantaneous properties of the sensor. Because

acceleration experienced by the sensor in between subsequent samples is unknown, it is

advisable to match visual acceleration estimates to the temporally closest accelerometer

sample rather than using interpolation. Thereby accelerometer data is implicitly sub-

sampled as some samples remain unmatched. This preference has been confirmed by

comparative empirical evaluation.

3.5.2 Temporally Decaying Thresholding (TDT)

Since accelerometer orientation is unknown and changing over time, a similarity between

acceleration norms is established. A moving object’s visual trajectory is most easily dis-

criminated from those of other objects during periods when its velocity changes frequently.

Unfortunately, the similarity of raw acceleration sequences during such periods is sensitive

to synchronization errors and to differences between instantaneous acceleration measured

by accelerometers and mean acceleration between frames as estimated from video. In

order to address this issue a radical approach is taken, transforming sequences Avidt and

Aacct into binary sequences Bt, where each element bt−j is non-zero if and only if the

absolute difference between the acceleration norm and the magnitude of standard gravity

exceeds some noise threshold τa, as in (3.6) where 1 [·] is the indicator function. While this

transformation discards most information on acceleration magnitudes it preserves local

extrema and saddle points in the corresponding velocity sequences.
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bt = 1 [|a|t − |ĝ| ≥ τa] (3.6)

An efficient, recursive similarity measure between pairs of binary sequences which gives

higher weight to recent frames using a multiplicative temporal decay α ∈ [0, 1) is defined

in (3.7) and (3.8). Similarity is thereby proportional to the number of frames in which both

sensors capture significant acceleration, reducing the impact of samples in the past through

temporal decay.

S
(i)
0 (Bvid

0 , Bacc
0 ) = 0 (3.7)

S
(i)
t (Bvid

t , Bacc
t ) = αS

(i)
t−1 + bvidt bacct (3.8)

This similarity measure is subsequently being referred to as Temporally Decaying Threshold-

ing (TDT).

As new trajectories get initialized others have already accumulated a potentially high

similarity score over time. Through empirical evaluation it was found that the algorithm

becomes more effective if after the first frame the similarity score of new trajectories is

initialized to the score of the closest trajectory hypothesis in the most recent frame.

3.5.3 Normalized Cross-Correlation (NCC)

In the most relevant related work, Maki et al. [64] used normalized cross-correlation

(NCC) as a scoring function. It is therefore sensible to introduce NCC here and use it as a

baseline for comparison of the proposed similarity measure. Normalized cross-correlation

(3.9) is a standard measure in signal processing for estimating the correlation between two

signals of fixed dimensionality D. Incorporating the mean and standard deviation of both

signals makes NCC invariant to differences in scale and translation.
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NCC(Avidt , Aacct ) =
t∑

i=t−D+1

(|a|vidi − µvidt )(|a|acci − µacct )

σvidt σacct

(3.9)

µt =
1

D

t∑
i=t−D+1

|a|i (3.10)

σt =

√√√√ 1

D − 1

t∑
i=t−D+1

(|a|i − µt)2 (3.11)

Considering the difficulties of signal synchronization and systematic errors arising

from comparing mean acceleration between video frames to instantaneous accelerations

captured by accelerometers, it is easy to see that normalized cross-correlation is not a good

similarity measure for accelerometer localization. When accelerometer data oscillates

with a high frequency, minor synchronization errors have a strong impact on the measured

signal similarity. NCC is particularly sensitive to systematic estimation errors as it is

dominated by extreme values (values far from the mean). As a result, the best matching

trajectory for a moving accelerometer corresponds often to a badly tracked point in the

background exhibiting random motion.

3.5.4 Point Location Estimate

Finally, an accelerometer’s location is estimated as the location of the highest scoring

hypothesis. In the rare case where all active trajectories have the same similarity (usually

occurring right after initialization), the algorithm does not give a location estimate. When

two or more hypotheses have the same highest score, the last location of the trajectory that

has been initialized earlier is chosen.

Note that by enforcing a unique point estimate for the location of an accelerometer a

lot of useful information provided by a similarity map is discarded. If for example none

of the point trajectories show a strong similarity with an accelerometer after an extended

period of time, this could indicate that the accelerometer is outside the camera’s field of
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view. If, on the other hand, trajectories in two (or more) distinct image locations show

strong and almost equal similarity to an accelerometer it would be sensible to consider

multiple location hypotheses in subsequent processing steps.

3.6 Long-Term Accelerometer Tracking

If an occluding object’s motion differs from the accelerometer motion, a previously

correctly matched trajectory is likely to drift away from the correct location as it tracks the

occluder. This scenario frequently occurs, for example, after an accelerometer-equipped

utensil has been released and the hand that previously held the device moves away. In this

case (bacct = 0), the similarity scores of all point trajectories are updated to S(i)
t = αS

(i)
t−1

and, as the ranking of hypotheses does not change, the estimated accelerometer location

diverges from the true location. For this reason the localization method discussed above is

extended to long-term accelerometer tracking by (i) detecting when an accelerometer is

not moving, (ii) taking a snapshot of the similarity map, and (iii) re-initializing similarity

scores once an accelerometer starts moving again. The accelerometer tracking algorithm is

described in pseudo-code in Algorithm 1 and discussed below.

A sample bacc = 0 indicates approximately constant velocity. As it is unlikely that

motion induced by a human exhibits constant velocity over an extended period of time,

it is likely that any sequence (baccs , . . . , bacct−j, . . . , , b
acc
t ) with s � t and bacct−j = 0 for all

j ∈ [0, t− s] is generated by a stationary device.

At each time instant s with baccs−1 = 1 and baccs = 0 a similarity mapM : {(S(i)
s ,xi)} of

pairs of hypothesis scores and trajectory locations in the current frame is generated and

stored temporarily (Algorithm 1.13). The transition from baccs−1 = 1 and baccs = 0 indicates

that the accelerometer potentially stopped moving.

Once the length of the interval [s, t] in which an accelerometer continuously measures

no significant acceleration exceeds a threshold τt, the location of that accelerometer is

temporarily estimated from the latest stored similarity mapM (Algorithm 1.24). The
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Algorithm 1 Accelerometer Tracking Algorithm

Input: Sequence of accelerometer data (a1, . . . aT ), where at : (atx, a
t
y, a

t
z) and sequence

of RGB-D images (I0, . . . , IT ).
Output: Sequence of estimated accelerometer locations (x̂1, . . . , x̂T ), where x̂t : (xt, yt).

1: t← 0, where t ∈ N+
0

2: bt ← 0, where bt ∈ {0, 1}
3: n← 0, where n ∈ N+

0 . counts consecutive samples with approx. constant velocity
4: {Pi} ← InitializeTrajectories(I0), where Pi : (x

(i)
t−j, . . . ,x

(i)
t )

5: {S(i)} ← InitializeSimilarityScores(∅), where S(i) ∈ R+
0

6: M← SimilarityMap({Pi}, {S(i)}), whereM : {(S(i),x
(i)
t )}

7:
8: for t← 1, . . . , T do
9: bt ← 1 [|at| − |ĝ| ≥ τa]

10: {Pi} ← UpdateTrajectories({Pi}, It)
11: {S(i)} ← UpdateSimilarityScores({Pi}, {S(i)}, bt)
12:
13: if bt = 0 ∧ bt−1 = 1 then . Accelerometer potentially stopped moving
14: M← SimilarityMap({Pi}, {S(i)})
15:
16: if bt = 1 ∧ n > τt then . Accelerometer stops being stationary
17: {S(i)} ← InitializeSimilarityScores(M)

18:
19: if bt = 0 then
20: n← n+ 1
21: else
22: n← 0
23:
24: if n > τt then . Accelerometer is likely to be stationary
25: x̂t ← PointEstimate(M)
26: else
27: x̂t ← PointEstimate({Pi}, {S(i)

t })
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accelerometer’s location x̂ is estimated as the constant location xi of the entry i inM with

highest similarity score S(i)
s .

When the accelerometer starts moving again, i.e., baccs+k = 1 for some positive k, the

hypothesis scores of trajectories Pi are re-initialized (Algorithm 1.16). Three methods for

re-initialization were considered and compared empirically.

Cold Start: All similarity scores are initialized to zero, i.e., S(i)
t = 0 for all i.

Nearest Neighbour: The similarity score S(j)
t of trajectory hypothesis j with current

location xj is initialized to the similarity score S(i)
s inM whose corresponding location xi

is closest to xj .

Kernel Density Estimation: As similarity scores are only available for a sparse set

of points in the image, selecting the score of a single nearest neighbor can be rather

arbitrary. One method for combining the similarity scores of multiple nearby hypothesis

locations is kernel density estimation (KDE). Kernel density estimation with a Gaussian

kernel is a special case of a Gaussian mixture-model with equal weights assigned to all

Gaussians (3.12). For similarity score initialization, 2D isotropic Gaussians are centered at

all locations xi in the similarity mapM.

S
(j)
t =

1

|M|
1

2πσ2

∑
i

S(i)
s exp

(
−(xj − xi)

T (xj − xi)

2σ2

)
(3.12)

It was found empirically that all re-initialization methods performed comparably, with

nearest neighbour exhibiting slightly better localization precision on average.

3.7 Summary and Outlook

This chapter introduced an accelerometer localization pipeline in which sequences of

accelerometer data are matched to sequences of local visual accelerations. Two methods

for estimating acceleration sequences from visual data were discussed, using either a)
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trajectories initialized at keypoint locations and tracked via KLT or b) trajectories ini-

tialized on a regular grid and updated using a dense optical flow field. An incremental

similarity measure was developed that is arguably more robust than normalized cross-

correlation against minor misalignment errors and errors resulting from the mismatch

between instantaneous acceleration data from accelerometers and estimated mean accel-

eration between subsequent video frames. In order to address the problem of occlusion

when an accelerometer-equipped object is stationary, a method was proposed that detects

object-stationarity and re-initializes hypothesis scores once an object starts moving. The

methods presented in this chapter are evaluated in chapter 7.1.

In the context of multi-modal activity recognition, visual accelerometer tracking will

be used to establish correspondences between accelerometer data and locations in the

visual field of the camera. Through these correspondences it is possible to model relations

between accelerometer data and visual features extracted in spatial proximity to the

estimated accelerometer locations. The next chapter introduces a feature representation

that encodes such relations, and it will be argued that such an encoding can capture

important properties of interactions between accelerometer-equipped objects and other

visual entities.
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Chapter 4
Relational Histograms for Activity

Recognition

The main hypothesis of this thesis is that extracting features independently from accel-

erometer data and from video discards important information on cross-modal relations

that is useful for activity recognition. The previous chapter introduced a method for

associating data captured by accelerometers with locations in every frame of a video. This

chapter investigates features that use this information. A family of feature descriptors

called object-generic relational histograms is formalized, and a method for multi-modal

recognition of activities from accelerometers and video data is described. Central to the

proposed recognition method is one instance from the family of object-generic relational

histograms: histograms of relative tracklets (RETLETS). It captures cross-modal relations

by encoding relational properties between accelerometer displacements and generic visual

motion descriptors (dense tracklets). A method for online activity recognition is proposed,

in which RETLETS are combined with other feature descriptors prior to classification.

Additional feature descriptors and multiple classifiers are described, which will be used

for comparative evaluation.
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4.1 Background

Information on the location and movement of key objects involved in activities can be

highly descriptive for visual activity recognition. Recognition of complex interactions

based on visually tracking all objects of interest often relies on high-level reasoning

methods which are computationally demanding and domain specific [2, 68, 69, 84, 85].

These approaches require object detectors and tracking methods for all objects of interest.

Acquisition and annotation of sufficient training data to build reliable object detectors

is a very time-consuming and costly process, and certain classes of objects are hard

to track visually (objects that are non-rigid, frequently subject to (partial) occlusion,

or that occupy a small number of pixels, for example). Relying exclusively on object

tracking for visual activity recognition is therefore impractical in many application areas.

These include recognition of food preparation activities, which involve a potentially large

number of different objects, and activity recognition in uncontrolled environments such as

movies, YouTube videos, and sports recordings, where state-of-the-art methods employ

sub-symbolic, generic local features (e.g., [111]). Methods for modelling activities from

local features usually follow a bag-of-words approach encoding the occurrence frequency

of codewords, essentially discarding spatial relations between features. Spatio-temporal

pyramids address this issue to some extent by coarsely encoding feature co-occurrence,

but they are very limited in accurately capturing interactions that span across spatial

segmentation boundaries [55].

In some application areas where it is practically infeasible to track all objects it may

however be possible to visually detect and track some objects reliably, or to acquire object

location and displacement information through other means that do not rely on objects’

visual appearance (e.g., accelerometer tracking). For these cases it would be useful to have

a feature descriptor that encodes relations between properties of tracked objects and generic

local descriptors. Section 4.3 introduces object-generic relational histograms, a family of

descriptors that captures relations between generic local features and reference features

extracted from some objects. This feature representation adapts the bag-of-words model
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Figure 4.1: Example snaphots from the activities place something into the bowl and mix the
salad. Tracklets (green) in the left and right image have similar shape. However, relative
to the trajectory of the spoon (red), points in the left image move towards whereas most
points in the right image move in parallel to this reference trajectory.

to scenarios in which some objects can be detected or tracked, and facilitates recognition

of complex interactions with standard classification algorithms such as support vector

machines (SVM).

Consider, for example, the activities place something into the bowl and mix the salad.

Example snapshots from this pair of activities are depicted in Figure 4.1, which also shows

dense tracklets ending in the depicted frames and trajectories of the spoon estimated via

accelerometer localization. Examining the shapes of dense tracklets in both images, they

appear to be similar. Relative to the trajectory of the spoon, however, points in the left

image move towards whereas most points in the right image move in parallel to this

trajectory. Exploiting this difference, a suitable relational feature descriptor could allow a

classifier to easily discriminate this pair of activities in this case. One example of the family

of object-generic relational histograms, histograms of RElative TrackLETS (RETLETS),

which encodes dense tracklets relative to fixed length displacement sequences of tracked

objects (subsequently called reference tracklets) is described in detail in Section 4.4.

For activity recognition, this chapter proposes to combine RETLETS with (i) features

extracted from each sensor modality independently (Sections 4.2 and 4.5), and with (ii)

statistical features from the visual trajectories of localized accelerometers (Section 4.5)
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Figure 4.2: Overview of data flow in the proposed method. Stages involved in encoding
cross-modal properties are highlighted in bold.

prior to classification (Section 4.6). The data flow is shown diagrammatically in Figure

5.1.

4.2 Dense Tracklets

The methods for activity recognition presented in this chapter are based on the concept of

point tracking, specifically dense tracklets as proposed for visual activity recognition by

Wang et al. [110]. In contrast to sparse point tracking, where tracks are initialized sparsely

at salient image locations [89] and tracked by matching the image content in a confined

local neighborhood [7], dense tracks are initialized on a regular grid and extended to the

next frame using a dense optical flow field [19]. Generating point trajectories from dense

optical flow produces fewer strong outliers compared to sparse point tracking due to the

smoothness of the flow field [110]. Furthermore, as tracked points are not bound to be

initialized at salient locations in the image, dense point tracking enables better coverage
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of the motion of weakly textured surfaces by uniformly sampling locations in the image

space.

As proposed in [110], point trajectories are initialized at locations g ∈ G on a regular

grid (with horizontal and vertical displacement dG between grid locations) in each frame iff

two conditions are satisfied: (i) none of the locations of active trajectories are within a dG×

dG neighborhood around the grid point g and (ii) the minimum eigenvalue min(λ
(g)
1 , λ

(g)
2 )

of the auto-correlation matrix of the image at location g is larger than the threshold

τλ = 0.001 · maxh∈Gmin(λ
(h)
1 , λ

(h)
2 ). The displacement of a point from one frame to

the next is estimated as the median-filtered dense optical flow field in a 3× 3 neighborhood

around the point’s location in the previous frame.

Tracklets encode point trajectories P : (x0, . . . ,xL−1) of image coordinates x : (x, y)

with fixed length L as L−1 displacements ∆xj : (xj+1−xj, yj+1−yj) that are normalized

by the total length of displacements along the trajectory (4.1).

T =
(∆x0, · · · ,∆xL−2)∑L−2

j=0 ||∆xj||2
(4.1)

Normalizing trajectories by their total length yields a scale-invariant representation and

thereby emphasizes the trajectory’s shape. Tracklets extracted from a spatio-temporal

video window are encoded as a histogram over a dictionary of tracklets for classification.

Tracklet dictionaries are obtained via k-means clustering of tracklets from a training set.

4.3 Object-Generic Relational Histograms

Consider a set {(fm,xm)}Mm=1 of M local features fm and corresponding locations in the

image xm, and a set {(f refn ,xrefn )}Nn=1 of N reference features extracted from N tracked

objects. Local features could be, for example, colour histograms, histograms of oriented

gradients (HOG), histograms of optical flow (HOF), or motion boundary histograms

(MBH).

This section proposes to encode interactions between local features and reference
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features as pairwise relations R(f refn , fm). Pairwise relations are mapped onto a codebook

C using a quantization function q(R(f refn , fm)) : R|f | × R|f | → [0, 1]|C|. The codebook

could, for example, encode feature co-occurrence, joint local appearance, relative location

or relative motion. A total of N histograms Hn are constructed, one for each reference

feature, that encode frequencies of relations between one reference feature and all local

features.

The contribution of each pairwise relation to a histogram is weighted by the likelihood of

a meaningful interaction wn,m. Weighted relational histograms Hn ∈ R|C| are constructed

using (4.2) and (4.3).

Hn =
M∑
m=1

wn,mq(R(f refn , fm)) (4.2)

All weighted histograms are individually L1-normalized. Each histogram Hn provides

a different representation of the set of local features by encoding their relationship to one

reference feature. Depending on the choice of relational codebook C and spatial weighting

function this descriptor can encode meaningful interactions between a reference object and

local visual features in its proximity. The presence of a meaningful interaction between

a local feature and a reference feature is intuitively related to their spatial separation. It

was chosen to weight the contribution of a feature fm to a histogram Hn using a Gaussian

function (4.3) with Euclidean distance for point features. For distances between point

trajectories we use (4.6).

wn,m = exp(−D(xrefn ,xm)2

2σ2
) (4.3)

This formulation provides a generic model of relational histograms that can be used with

a wide variety of local feature descriptors and pair-wise relations. One instance of this

family is described in the next section, which is used for modelling interactions between

dense tracklets and accelerometer-equipped objects.

One type of relation - local co-occurrence - has been widely studied in the computer
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vision literature (e.g., [42, 87, 100, 122, 125]). Correlograms [42] encode for each pair of

codebook features a histogram over a fixed number of spatial relations. The length of this

descriptor grows exponentially with the codebook size, which makes it very costly to use

with common numbers of codewords between 400 and 4000 for local features. Several

methods have been proposed to address this issue, including correlatons, which discard

information on codeword identity [87], mining frequent [125] and mining discriminative

[122] patterns of correlations. The model presented here offers a new way to reduce the

descriptor length by considering pairwise relations between codewords of local features

and features of a small fixed number of tracked objects. Here, the descriptor length

is proportional to N |C|, which is manageable if the number of tracked objects N is

small. Another important difference of this model to the methods in the literature is the

distance-dependent weighting function that emphasizes relations between features that

are spatially close. Note, however, that through the weighting function in Equation (4.3)

scale-invariance is lost.

4.4 Histograms of Relative Tracklets (RETLETS)

While feature co-occurrence may be a suitable second-order statistic for local appearance

features, a relative description of local visual motion features better captures, in qualitative

terms, interactions such as visual entities moving towards, away from and around each

other (see Fig. 4.1). A descriptor encoding generic video tracklets relative to semantically

meaningful reference tracklets acquired by tracking some objects is therefore more inform-

ative for complex interactions of multiple objects (see Fig. 4.3). This section proposes

relational histograms using densely sampled fixed length point trajectories Pm as local

features fm, using fixed length reference trajectories P ref
n acquired through some form of

object tracking as reference features f refn and using relative tracklets as pair-wise relations.

Given a fixed length point trajectory Pm and a fixed length reference trajectory P ref
n

as defined on page 49 above Equation (4.1), the relative trajectory P rel
m is defined as the
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(a) (b)

Figure 4.3: Absolute tracklets and RETLETS. A toy example in which (a) histograms
of absolute tracklets differ in only two bins whereas (b) tracklets relative to a reference
tracklet (ref1-relative) change their shape entirely and make the corresponding histogram
representation more discriminative. Distance-based re-weighting of histogram entries adds
further to discriminative power.

sequence of differences between point locations (4.4). The difference between a pair of

point locations (x
(m)
0 ,xref0 ) describes the location x

(m)
0 relative to the location xref0 , and

the sequence of relative locations describes the motion of the visual entity tracked by Pm

from the perspective of the reference feature P ref . This relative motion is illustrated in

Figure 4.3(b).

P rel
m = ((x

(m)
0 − xref0 ), · · · , (x(m)

L−1 − xrefL−1)) (4.4)

Similar to Equation (4.1), the relative tracklet R is defined as the sequence of normalized

displacements along the relative trajectory P rel as in Equation (4.5).

R =
(∆xrel0 , · · · ,∆xrelL−2)∑L−2

j=0 ||∆xrelj ||2
(4.5)

As tracklets are extracted along a sequence of points in the image, weights in Equation

(4.3) are determined based on the mean pair-wise distance between locations along the

corresponding point trajectories (Equation 4.6).
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D(P ref
n , Pm) =

1

L

L−1∑
l=0

||x(m)
l − xrefl || (4.6)

The relational codebook C is trained using k-means clustering on a training set of relative

tracklets Rm. The Voronoi cells defined by the k cluster centers define the quantization

function q. In every frame of a video, dense tracklets are extracted and reference tracklets

are newly determined. For each reference tracklet, relative tracklets are constructed using

all dense tracklets ending in the same frame using (4.4). All relative tracklets are then

mapped onto the codebook C using quantization function q, and inserted to their respective

histogram with their contribution weighted using (4.3) and (4.6). The process of extracting

a histogram of relative tracklets from a temporal window within a video is illustrated in

Figure 4.4.

4.4.1 Discussion of Related Work

A degenerate case of this method, tracking a single object, a person’s head, has been

independently proposed by Bilinski et al. [6] in order to extract tracklets that are invariant

to the person’s translational motion in the image plane. Their motivation for employing

relative trajectories is different in that their model aims to correct for unrelated motion of

the person’s body rather than to capture activity-specific interactions between the tracked

object and dense tracklets. In that regard their approach is closely related to Wang and

Schmidt [111], where dense tracklets are improved by correcting for camera motion and

by discarding tracklets on the background.

4.4.2 Reference Tracklets from Accelerometer Localization

This thesis proposes to generate multiple reference tracklets using visual accelerometer loc-

alization as a method for tracking accelerometer-equipped objects. For each accelerometer-

equipped object one reference tracklet is created from the most recent L− 1 displacements

of the point trajectory that best matches the data captured by its accelerometer. One
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(a) Generic fixed length point trajectories (black) and estimated object trajectories (red). The blue
line indicates the history of the point trajectory associated with the tracked object after time t before
it becomes the best match.

(b) Relative point trajectories wrt. the tracked object. The first object trajectory serves as reference
trajectory for all point trajectories ending before time t. The second object trajectory and its history
are used for all point trajectories ending after time t.

(c) When encoding RETLETS over a temporal subwindow from time s to time u, all
relative trajectories ending in the interval [s, u] are inserted into a histogram.

Figure 4.4: Construction of RETLETS within the temporal window [s, u] from generic
fixed length point trajectories and object trajectories.
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histogram over relative tracklets is constructed for each accelerometer equipped object

and the final descriptor is the concatenation of these histograms. Note that the number

of accelerometer-equipped objects is assumed to be known and fixed. Analysis of rela-

tions between accelerometer motion and visual features in spatial proximity to the device

provides context for accelerometer motion and allows for joint reasoning about how other

objects in the scene move relative to accelerometer-equipped objects. This information

provides a crucial link between dense tracklets in the camera view and features extracted

from accelerometer data, that enables a classifier to discover descriptive cross-modal

relations.

4.4.3 Discussion of Joint Appearance using Relational Histograms

In order to illustrate how relational histograms can be used with other common local visual

features, let us consider a joint appearance model with local HOG descriptors extracted

along point trajectories as proposed by Wang et al. [110]. The dense local HOG descriptors

would serve as generic features fm, and a HOG descriptors along the point trajectory of each

tracked object would represent the reference features f refn . The joint appearanceR(f refn , fm)

could be modeled by concatenating both local appearance descriptors, optionally reducing

the dimensionality of the relational descriptor using principal component analysis (PCA).

The relational codebook C would be learned using k-means clustering applied to a training

set of joint appearance descriptors. As local HOG descriptors in this example are extracted

along point trajectories, Equation (4.6) would be equally applicable to determine the

weights of histogram entries here. If local HOG descriptors were extracted around fixed

locations in the space-time volume, the Euclidean distance between these locations would

be used to determine weights instead.
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4.5 Auxiliary Features

The feature descriptor presented in the previous section - RETLETS - provides a rich

representation of the motion in the scene by describing local motion features relative to

the motion of tracked objects. Since objects are tracked using accelerometer localization,

which works well but fails in some cases, it is advisable to also use the original dense track-

lets, which capture motion relative to the camera viewpoint (subsequently called Absolute

Tracklets) for recognition. Note that up until this point, little motion information captured

by accelerometers is encoded in the set of feature descriptors. Even the displacement of

the visual trajectory that best matches the accelerometer’s data is only used as a reference

frame for dense tracklets, and none of the trajectory’s characteristics are encoded explicitly.

Both features encoding the data captured by accelerometers and features extracted from

the associated visual trajectory are expected to provide complementary information to

RETLETS and absolute tracklets. Therefore, additional features, Accelerometer Statist-

ics and Reference Tracklet Statistics are included for activity recognition. Two further

feature types are considered as simple baseline features for comparative evaluation: Ob-

ject Use extracted directly from accelerometer data and Device Locations extracted from

accelerometer localization results. All of these feature types are described below.

4.5.1 Accelerometer Statistics

Accelerometer features that have previously been shown to give good performance on a

recognition task involving food preparation actions are used [75]. Statistical features are

estimated from acceleration sequences A : ((a0x, a
0
y, a

0
z), . . . (a

t
x, a

t
y, a

t
z)) over a temporal

window of fixed length N . The following statistics are estimated from each 3D component

of A individually, formalized using the ax-component as an example:

• Mean: µx = 1
N

∑t
i=t−N+1 a

i
x

• Standard Deviation:
√

1
N−1

∑t
i=t−N+1 (aix − µx)2
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• Energy:
∑t

i=t−N+1 |aix|2

• Entropy: −
∑K−1

j=0 pjxlog2(p
j
x),

where px is a normalizedK-dimensional histogram over aix with i = t−N+1, . . . , t.

Additionally, pitch and roll are estimated from four temporal subwindows evenly spaced

with 50% overlap. Pitch and roll encode the device’s orientation relative to the direction of

gravity and can be estimated from accelerometer data because the data represents proper

acceleration (relative to free fall). The yaw angle cannot be recovered from accelerometer

data because the yaw angle describes rotation around the axis that is aligned with the

direction of gravity. This set of features encodes each accelerometer’s motion with a

20-dimensional feature vector, and features extracted from all devices are concatenated.

4.5.2 Reference Tracklet Statistics

Global characteristics of the shape of reference tracklets are encoded by Reference Tracklet

Statistics with one feature vector extracted for each accelerometer-equipped object. From

the most recent L − 1 displacement vectors of the point trajectory that best matches an

accelerometer’s data, the mean, standard deviation, energy and entropy are estimated

separately for displacements in x- and y-coordinates in the image. These features are

concatenated to form a single feature vector characterising the visual motion of all devices.

4.5.3 Object Use

For benchmarking purposes simple features are used that encode whether an accelerometer-

equipped object is used at a given time. This feature type will be used to evaluate

the importance of identifying the objects involved in activities for activity recognition.

Following the argumentation in Section 3.6, an accelerometer is stationary if it measures

no significant acceleration over an extended period of time. Assuming an accelerometer is

in use if and only if it is moving, object use at time t can be defined as in (4.7).
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InUse(Bacc) =

(
τt−1∑
j=0

bt−j

)
> 0, (4.7)

where b and τt are defined as in Sections 3.5.2 and 3.6, respectively.

In order to extend battery life, the wireless accelerometers used in the experiments

of this thesis stop data transmission if the measured magnitude of acceleration does not

exceed a noise threshold over a fixed number of consecutive samples N∗. Whether an

accelerometer is not InUse at a given time could therefore be detected by checking

whether the accelerometer sent any data. With this approach not InUse is detected with a

delay of N∗ − 1 samples. This delay could be reduced using Equation (4.7) with τt < N∗.

However, decreasing the temporal interval also increases the uncertainty about whether an

object is stationary or moving with constant velocity. Preliminary evaluation results have

shown that recognition performance does not change significantly with τt 6= N∗.

4.5.4 Device Locations

In order to gain further insight into which type of information is important for recognizing

food preparation activities, a feature type that encodes for each accelerometer-equipped

object its location (x, y) in the most recent frame is encoded. An accelerometer’s location

is set to the most recent location of the best matching point trajectory identified by the

accelerometer localization algorithm.

4.5.5 Discussion

Note that Absolute Tracklets encode information extracted from video data, Accelerometer

Statistics and Object Use encode information extracted from accelerometer data, and RET-

LETS, Reference Tracklet Statistics, and Device Locations capture information from both

sensor types. By evaluating each feature type independently and different combinations

of these feature types with respect to activity recognition performance we will gain a

detailed understanding of (i) which types of information are important for recognizing
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food preparation activities, and importantly, whether including RETLETS does enable the

classifier to discover strong cross-modal relations.

4.6 Online Activity Recognition

4.6.1 Temporal Sliding Windows

Using the features described in the previous sections this thesis aims to recognize activities

online. Online recognition involves recognition of activities in videos containing sequences

of multiple activities without knowing the temporal extent of each activity instance, i.e.

the start and end frames of activity instances are unknown. This thesis employs a sliding

window approach in which features are extracted from a fixed length temporal window

(windows with temporal length of 5s were used, and tracklets with length L=16 were

extracted). For inference, the temporal window is shifted by a single frame at a time and

features from each temporal window are classified independently. The classification results

of each temporal window are not combined or processed further. For classifier training

an overlap between temporal windows of up to 75% is considered rather than extracting

training samples from temporal windows placed at every frame. This substantially re-

duces the number of training samples while maintaining recognition performance and

better approximates the independence assumption of training samples made by common

classifiers.

4.6.2 Classifiers

Support Vector Machine

The support vector machine (SVM) is a margin-maximizing classifier that is particularly

popular in the computer vision community. Kernel-SVMs learn to separate training samples

from different classes in a possibly infinite dimensional hyperspace without explicitly

projecting the training data into this high-dimensional space. Instead, optimization is
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performed based on a kernel matrix, which specifies for each training sample its similarity

to a set of training functions. This thesis uses the Gaussian radial basis function (RBF)

kernel and the exponential χ2 kernel. The RBF kernel estimates the similarity between

all pairs of training samples using the squared Euclidean distance (Equations (4.8) and

(4.9)). The exponential χ2 kernel uses the χ2 distance, which is more suitable to comparing

normalized histograms (Equations (4.10) and (4.11)).

KRBF (fi, fj) =exp (−γRBFDRBF (fi, fj)) , with (4.8)

DRBF (fi, fj) =||fi − fj||2 (4.9)

Kχ2(fi, fj) =exp (−γχ2Dχ2(fi, fj)) , with (4.10)

Dχ2(fi, fj) =

|f |∑
k=0

(fki − fkj )2

fki + fkj
(4.11)

SVMs are binary classifiers for which two multi-class extensions have been proposed.

One-vs-one multi-class SVMs train one binary classifier for each pair of classes, and all

classifiers vote for one class during inference. A test sample is classified as the class that

receives most of the votes. One-vs-rest multi-class SVMs train one binary classifier for

each class with negative training samples from all other classes. Using classification scores,

a test sample is classified as the class with the highest score.

In this thesis, features extracted from temporal sliding windows are classified using

one-vs-one multi-class SVMs. For Absolute Tracklets and RETLETS the exponential χ2

kernel (4.10) is used with γχ2 = 1
A

, where A is the average distance between training

histograms [124]. For Accelerometer Statistics, Reference Tracklet Statistics, Object Use

and Device Locations, features extracted for each accelerometer were concatenated and

feature vectors were compared using the RBF kernel (4.8) after scaling all dimensions
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individually to [−1, 1]. For these feature types γRBF was determined by cross-validation.

Kernel Combination SVM classification from multiple feature types involves combin-

ing the kernel matrices computed for each feature type. This thesis considers three methods

for kernel combination. Given a set of F feature types f (f), f = 1, . . . , F , distance matrices

D(f), scaling parameters γ(f), and kernel matrices K(f) the following kernel combinations

are considered:

• SumDistance : exp(−
∑F

f=1 γ
(f)D(f)(f

(f)
i , f

(f)
j )

• MeanDistance : exp(− 1
F

∑F
f=1 γ

(f)D(f)(f
(f)
i , f

(f)
j )

• SumKernel :
∑F

f=1K
(f)(f

(f)
i , f

(f)
j )

As e(a+b) = ea · eb, SumDistance and MeanDistance assume individual feature

types to be independent. It is expected that SumKernel performs better when combining

strongly correlated feature types such as Absolute Tracklets and RETLETS.

Random Decision Forest

Random decision forests are non-linear classifiers that naturally extend to multi-class

classification and produce well calibrated posterior probabilities. These characteristics

make this classifier favorable compared to the popular support vector machine (SVM)

[16], if the whole class posterior distribution is used for further processing. This thesis

investigates feature fusion at different stages of the recognition pipeline, and random

decision forests will be used as base classifiers for late fusion, i.e. combining feature types

after classification.

A random forest is an ensemble of random decision trees, where each tree is trained

in isolation [16]. Each internal node of a decision tree represents a weak classifier in the

form of a binary decision function. Starting at the root node, a random subset of the set

of weak learners is selected. This random subset of learners is evaluated in combination

with a small number of randomly selected thresholds against the information gain criterion.
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The weak classifier with highest information gain on the training data for this node is

selected. The weak classifier divides the training data into two partitions. The left and

right child node are subsequently trained based on their respective training data partitions.

Leaf nodes store the distribution of training samples arriving in a given node over classes.

This thesis uses axis-aligned weak classifiers, which simply compare the value of a single

dimension of a feature vector with a threshold. Using axis-aligned weak classifiers makes

it particularly easy to combine multiple types of feature vectors; the vectors only need to

be concatenated. Using more complex classifiers in the tree nodes is associated with a

significantly higher computational cost for training. Preliminary evaluation on our data

showed that more complex classifiers did not improve recognition performance.

In order to deal with unbalanced training data, the contribution of samples from different

classes to (i) information gain and (ii) class distributions in the leaf nodes are weighted

differently. The weight of a sample from class c ∈ C is set to be inversely proportional to

the number of samples nc from that class in the training set:

wc = maxu∈C(nu)/nc (4.12)

In the limit of an infinite number of training samples this approach is equal to stratifica-

tion, i.e., selecting an equal number of samples per class.

In the inference stage a feature vector traverses all trees starting at the root node,

descending to the next node depending on the evaluation of the weak classifiers in the

current node on the test sample. The class distributions of the destination leaf nodes are

summed and normalized yielding a posterior distribution over activity classes given the

test sample.

The meta-parameters of a random forest specifying (i) the number of decision trees, (ii)

the maximum depth of each tree, (iii) the number of randomly selected features tested in

each node, and (iv) the number of thresholds tested per feature need to be set prior to forest

training. We attempt to find good values for these parameters through model selection.

Automatic model selection involves choosing the model that minimizes a loss-function.
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As our random forests select features for each node to maximize information gain, the

cross-entropy error is used as the loss-function for model comparison. The cross-entropy

error for a single datapoint is defined as

H(p, q) = −
∑
c

p(c)log2(q(c)) = −log2(p̂(cgt|o)), (4.13)

where p(c) is the ground-truth class distribution (delta-function with peak at true class

label cgt) and q(c) is the class posterior p̂(c|o) estimated by the recognition algorithm. In

this special case the sum only contains a single non-zero element, which is the log of the

estimated probability for the ground-truth class. We compute the per class cross-entropy

error and sum over all classes in order to obtain a single performance measure given in

(4.14).

Hm =
∑
c

1

nc

∑
i:pi(c)=1

H(pi, qi) (4.14)

Since cross-entropy is estimated from cross-validation it can be regarded as a random

variable with fluctuation around the mean. Treating model-selection as a regression

problem with cross-entropy as its error function, we handle the bias-variance trade-off by

selecting the model that minimizes mean(Hm)2 + variance(Hm).

Fusion Methods

In addition to combining information from accelerometers and video data through ac-

celerometer localization to extract RETLETS, Reference Tracklet Statistics, and Device

Locations (data-level fusion), fusion at feature level by concatenating feature vectors (early

fusion) and fusion at classifier level (late fusion) are considered. For classifier fusion, the

sum-rule and the product-rule [48] as well as Random Decision Forests are considered as

a non-linear combination method.
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4.7 Summary

This chapter introduced a family of feature descriptors, object-generic relational histograms,

that model relations between generic local features and a set of reference features using

histograms over a bag of relations. One example from this family - RETLETS - was

proposed, which models relations between dense tracklets and reference tracklets using

relative tracklets. For activity recognition from video and accelerometer data it was

proposed to encode RETLETS using reference tracklets from accelerometer-equipped

objects, which are determined via the accelerometer tracking algorithm developed in

Chapter 3. Additional features were discussed that will be either combined with RETLETS

for multi-modal activity recognition or used as baseline features for comparative evaluation.

Finally, two classifiers, SVMs and random decision forests were discussed, and it was

described how multiple features are combined for early fusion using these classifiers.
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Chapter 5
User-Adaptive Classification

One dominant characteristic of manipulation activities is that individual tasks such as “mix

the ingredients” are often defined by the states of the manipulated objects after successful

task completion (the ingredients are mixed), and one can choose from a potentially wide

spectrum of strategies (e.g., mixing ingredients by hand, using a pair of spoons, or by

shaking the bowl). As we are commonly believed to be creatures of habit, it is reasonable to

hypothesize that each person tends to choose the same strategy each time he is confronted

with the same task. If a recognition system is used primarily by a single individual, it could

be possible to improve recognition accuracy for that individual by tailoring the system to

his idiosyncrasies.

This chapter investigates ways of exploiting personal preferences and habits in task

execution for activity recognition. The proposed methods adapt a discriminative activity

model that has been trained on data from multiple individuals using some small amount

of labeled data from an additional individual such as, for example, the primary end-user

of the recognition system. While the main contribution of this thesis is the application

of these methods to activity recognition, they do not exploit domain knowledge and are

therefore easily transferrable to other domains (in which the success of these methods may,

of course, vary).
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(a) Classifier combination (b) Joint classifier training

Figure 5.1: User-adaptive recognition. (a) Classifier combination in which the classification
results of generic and user-specific discriminative classifiers are combined at test time. (b)
A single classifier is trained on both generic and user-specific data.

5.1 Background

5.1.1 Motivation

Usually a classifier is trained with the goal of maximizing generalization performance. An

activity recognition system would be trained on data from a large sample of individuals that

are assumed to be drawn from the same distribution as the individuals whose activities the

system is to recognize after deployment. With a potentially large inter-person variability

in activity execution, the problem of distinguishing a pair of activities performed by two

randomly drawn individuals is comparably harder than distinguishing that pair of activities

performed by the same individual. For example, if an activity may be performed with a

wide range of strategies in general, but as a creature of habit the individual always chooses

the same one, the intra-class variability of activities performed by that individual will be

smaller. If a recognition system is expected to be used primarily by that individual, it

would be sufficient to generalize well across variations of his chosen strategy, which can

be easier than attempting to achieve good generalization performance across all possible

strategies.

In order to discover and train a classifier on intra-person variations one would need data

from that individual. In practice, acquiring this data is often costly and limited to a small

number of samples. It is therefore likely to be insufficient to train a classifier on this data

exclusively. A more promising approach, which has been applied successfully in domains
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such as speech recognition [101] and handwriting recognition [71], is to fine-tune or adapt

a classifier that was trained on generic data using some small amount of data from the end

user.

This chapter explores the potential of user-specific classification of manipulation activ-

ities with limited data from the target individual. Three simple methods for adapting

generic, stereotypical activity models to specific individuals whose data are not available

when training the generic models are investigated. Firstly, a user-adaptive discriminative

recognition model is presented in which a generic and a user-specific classifier are trained

independently and merged at test time by combining class posterior probabilities (see Fig-

ure 5.1a). This method does not require all generic training data to be available at the time

the model is adapted to a particular subject, which can be desirable for practical reasons of

system deployment. The second model involves training a single support vector machine

jointly on generic and user-specific data (see Figure 5.1b). This approach requires the

whole model to be retrained every time new user-specific data become available. Thirdly, a

K-Nearest-Neighbour classifier is proposed in which different probability mass is assigned

to user-specific and generic training samples (the data flow in this model can be also

represented by the diagram in Figure 5.1b) . While K-Nearest-Neighbour classification

allows user-specific data to be added at any time with no cost for retraining, maintaining

the entire set of generic data may be practically infeasible. The contributions of this chapter

have been previously published in part in [97].

5.1.2 Related Work

User-adaptive classification has been an active research area in handwriting [71], speech [36,

101], gesture recognition [58, 60], and recognition of activities from accelerometer data [4].

Existing methods vary widely in the level of user effort required for adaptation, both ini-

tially (when the user interacts with the system for the first time) and continuously (during

normal everyday interaction with the system).

User-directed personalization [58, 60] requires the user to provide example activity
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executions and the corresponding labels. These approaches can be initialized with as little

as a single training example per activity and provide maximum flexibility by allowing users

to freely add new activities. During normal interaction these methods depend on the user

to communicate recognition errors back to the system and to provide the intended/ correct

label for falsely recognized activities, which can be extremely burdensome. Reducing

the effort of providing feedback during normal interaction, Foster et al. [26] proposed

to automatically adapt to recognition failures that are detected from error signals in

electroencephalography (EEG) data.

Initially driven by the speech recognition community, major advances have been made

in fully automatic adaptation of recognition systems to target users and their environments.

He and Zhao [36] propose a method using dynamic model selection, which identifies

one out of a large set of pre-trained classifiers that matches best a speaker’s characterist-

ics. Tang et al. [101] represent speaker idiosyncrasies by a vector in a low-dimensional

space representing variation across speakers, which is adapted using maximum-likelihood

estimation on user-specific data. While these approaches could be similarly applicable

to activity recognition, a large number of classifiers needs to be trained which cover all

possible user-idiosyncrasies and all possible environments in which the system shall be

used. This inherent inability to adapt to new environments severely limits the applicability

of this approach to manipulation activities such as preparing food. Recently, Wen-Sheng et

al. [114] introduced a promising method that can adapt to unforeseen contexts, requires

less training data, and also does not require labelled data from the end user. Their Se-

lective Transfer Machine trains a new classifier for the end user from generic training

data. Individual samples are re-weighted in an unsupervised way based on unlabelled

user specific data, which effectively adapts the recognition system to the end-user’s idio-

syncrasies. Although this method has been proposed for facial action unit recognition, it

may be similarly applicable to multi-modal activity recognition. For adapting to gradual

changes in sensor placement, Forster et al. [27] proposed a method that tracks clusters of

activities in feature space. This method seems particularly promising for online adaptation
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of situational support systems for people with impairments that become more severe or

improve over time.

This chapter focuses on methods for one-off user-adaptation based on a small set

of labeled user-specific training examples. As labeled data contains more information

than unlabeled data, a supervised setting is well suited to exploring the potential of

user-adaptation by providing an indication of an upper bound for achievable recognition

performance increase. Furthermore, initial adaptation based on a small set of labelled data

appears to be more acceptable and less distracting in practice than continuously prompting

the user for labels and confirmations of recognized activities. Although not considered

in this thesis, a combination of initial adaptation using labelled data with continuous

refinement based on unlabeled data is expected to increase recognition performance further

without additional effort required from the end-user.

5.2 Adaptation by Classifier Combination

Before introducing the first method for classifier adaptation it is useful to establish some

naming conventions. Data from a set of individuals that does not include the end-user

is called generic data, and data from the end-user is referred to as user-specific data.

Analogously, a generic classifier is trained exclusively on generic data, and a user-specific

classifier is trained exclusively on user-specific data. In mathematical notation, expressions

related to generic and user-specific data are indicated with subscript g and subscript s,

respectively. Note that the terms user-specific classification and classifier adaptation

are used interchangeably, as all methods subsequently discussed in this chapter address

user-specific classification by adapting a recognition system through modifying or adding

classifiers.

The problem of adapting a generic classifier to a target user can be formulated as

classification with multiple experts, a problem that is well established in the machine

learning literature [48]. One expert, a generic classifier, is trained to generalize well across
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individuals, and another expert, a user-specific classifier, establishes a good model of

the activity patterns observed from the target user. From this perspective, user-adaptive

classification involves training a separate classifier from user-specific training data and

combining the classification results obtained by the generic and user-specific classifiers

at test time. Given two classifiers that estimate posterior probabilities p(c|f) of activity-

classes c given feature vectors f , these distributions can be combined by taking their

weighted sum,

p(c|f)comb = wgp(c|f)g + (1− wg)p(c|f)s, (5.1)

where wg ∈ [0, 1] is the weight of the contribution the generic classifier makes to the

combined classification result. This weight is a free parameter that can be used to control

over-fitting and to adjust the relative confidence in the classification results of generic and

user-specific classifiers, which depends, for example, on the number of available user-

specific training data points. The activity class with maximum p(c|f)comb is considered

to be the recognized activity. This adaptation method was evaluated with support vector

machines, whose outputs were transformed to posterior probabilities using Platt scaling as

provided by the LibSVM1 library.

5.3 Adaptation by Joint Classifier Training

Adapting a recognition system to a target user by combining generic and user-specific

classifiers does not require the full set of generic training data to be available at the time

the system is adapted to a target user. The late combination of recognition results may,

however, yield suboptimal recognition performance and jointly training a single classifier

from both generic and user-specific training data may prove to be superior. This section

introduces two models for joint classifier training and shows how the relative contribution

of generic and user-specific data may be modified.

1LibSVM: http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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5.3.1 Joint SVM Training

As SVMs have shown competitive performance on many recognition tasks and are par-

ticularly popular in the computer vision community, it is of particular interest to analyze

this classification model with respect to user-adaptation. The primal optimization problem

of the C-SVM formulation with weight vector w, kernel function φ(f), bias b, feature

vector fi, labels y(i) and slack-variables ξ(i) for i = 1, . . . , N training samples is given by

Equation (5.2).

minw,b,ξ
1

2
wTw + C

N∑
i=1

ξ(i), (5.2)

s.t. y(i)(wTφ(fi) + b) ≥ 1− ξ(i),

ξ(i) ≥ 0

The contribution of the set of generic training data and the set of user-specific training

data to the objective function can be controlled by the relative number of samples in these

subsets. If the number of user-specific samples is greater than the number of samples

from generic training data the relative cost of misclassifying user-specific data is greater

than the cost of misclassifying generic data. If the number of training samples are equal,

generic training samples are taken from a large number of different activity-sequences,

and user-specific training data is only available for, e.g., a single sequence, then the cost

of misclassifying samples from the user-specific sequence is proportionally higher than

the cost of misclassifying samples from each sequence in the generic training data set.

Alternatively, one can define a different cost of misclassification Cg and Cs for generic and

user-specific training samples (5.3). The sets of generic and user-specific training samples

are denoted as {f}g and {f}s, respectively.

minw,b,ξ
1

2
wTw + Cg

 ∑
{i|fi∈{f}g}

ξ(i)

 + Cs

 ∑
{i|fi∈{f}s}

ξ(i)

 (5.3)
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5.3.2 Weighted K-Nearest-Neighbour

A simple yet effective discriminative classification algorithm is K-Nearest-Neighbour [70].

This algorithm does not involve any learning but needs all training data to be available at

test time. The class-posterior distribution given an observation is estimated by identifying

the set NNK(f) of K training samples that are closest to the observation in feature space

given some distance metric. Let Kc be the number of training samples from class c in this

set. The class posterior distribution is defined as the proportion of samples from class c in

the set, i.e.,

p(c|f) =
Kc

K
. (5.4)

This treats all training samples as being equally important. A generalization of Equa-

tion (5.4) assigns a different probability mass to each training sample, i.e.,

p(c|f) =

 ∑
{i:fi∈NNK(f),fi∈{f}c}

m(i)

 /

 ∑
{j:fj∈NNK(f)}

m(j)

 , (5.5)

where the set of training samples from class c is denoted as {f}c. Equation (5.5) is

equivalent to Equation (5.4) if m(i) = 1/N for all training samples. For user-adaptive

classification, the relative contributions of generic and user-specific data to the estimated

class-posterior probability can be adjusted using Equation (5.5) by assigning probability

mass mg to all generic samples and probability mass ms to all user-specific samples. If

the weight for generic training samples is much greater than the user-specific weight

(mg � ms) then generic samples dominate Equation (5.5). Therefore, the impact of

user-specific training samples on the recognition result is negligible if there is at least

one generic sample among the K nearest neighbours. In the inverse case (ms � mg) the

recognition result depends almost exclusively on user-specific training samples assuming

at least one user-specific sample is among the K nearest neighbours.

While multiple feature types for SVM classification are combined via kernel com-

bination (see Section 4.6.2, p. 61), a combined distance metric needs to be defined for

K-Nearest-Neighbour classification from multiple feature types. For evaluation in this
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Figure 5.2: Qualitative comparison of the three methods for user-adaptive classification
methods discussed in this chapter.

thesis a weighted sum of individual distances in each feature space as in Equation (5.6)

was computed, with feature-type dependent weighting coefficients γf and distance metrics

Df as described in Section 4.6.2, p. 60.

D(f , fi)comb =
∑
f

γfDf (f
f , f fi ), (5.6)

5.4 Comparison of User-Adaptation Methods

The three methods for user-adaptive classification discussed in this chapter have dif-

ferent characteristics with respect to the amount of generic training data required for

user-adaptation, the amount of time required for user-adaptation, and the amount of

classification time required after user-adaptation. A qualitative comparison of these char-

acteristics is shown in Figure 5.2. Note that statements about computation time assume

sequential processing and estimates for K-Nearest-Neighbour assume that an exact search

is performed.

In contrast to joint SVM training and weighted K-Nearest-Neighbour, classifier com-

bination does not require all generic training samples to be available for user adaptation.

As a result, such a system may have substantially lower requirements on data storage

(depending on the ratio of model parameters to the number of training samples times the

feature dimensionality), which is particularly important for mobile and pervasive embedded

systems.

As K-Nearest-Neighbour does not require any model training, the time required for
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user adaptation in this model is comparably low. Among the three models considered, the

time required for user adaptation is highest when training a joint kernel-SVM from generic

and user-specific data as (Ng +Ns)
2 entries of the kernel matrix need to be computed. For

combining generic and user-specific kernel-SVMs, the kernel matrix of user-specific data

of size N2
s can be substantially smaller.

In the inference stage, exact K-Nearest-Neighbour requires most computation time

as the distance between the test sample and all training samples need to be computed .

Computation time for SVM classification is proportional to the total number of support

vectors. As SVM-classifier combination employs two disjoint sets of support vectors their

total number is generally higher than the number of support vectors in a jointly trained

SVM but usually smaller than the total number of training examples. This analysis aims to

give a general intuition for relative computational cost; in practice the ranking of classifiers

with respect to computational cost varies with classifier implementations and datasets.

2D Toy Example

In order to give a better understanding of the adaptive behavior exhibited by classifier

combination (here, K-Nearest-Neighbour is used as base classifier) and weighted K-

Nearest-Neighbour, Figure 5.3 illustrates these methods applied to a toy example of

a two-class classification problem in two dimensions. The generic training data was

generated by sampling Ng = 2000 samples from Gaussian distributions with parameters

(5.7) and (5.8). The user-specific training data was generated by sampling Ns = 20 from

Gaussians with parameters (5.9) and (5.10). The test data contains Ns datapoints sampled

from Gaussians with parameters (5.11) and (5.12).

The top row in Figure 5.3 shows the distribution of generic training data (left) and

user-specific training data (right) with the decision boundary acquired when training a

K-Nearest-Neighbour classifier withK = 10 exclusively on the generic or the user-specific

data, respectively. It can be seen that the problem of distinguishing the two classes on the

user-specific data is substantially easier as the sample distributions do not overlap.
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Figure 5.3: Comparison of classifier combination using K-Nearest-Neighbour as base
classifier and Weighted K-Nearest-Neighbour on a 2D toy example. See text in Section 5.4
for discussion.
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µredg = (0, 0)T Σred
g =

 0.15 0.00

0.00 1.00

 (5.7)

µblueg = (2, 0)T Σblue
g =

 1.00 0.75

0.75 1.00

 (5.8)

µreds = (1, 0)T Σred
s =

 0.30 0.00

0.00 0.60

 (5.9)

µblues = (4, 2)T Σblue
s =

 0.55 0.00

0.00 0.55

 (5.10)

µreds = µreds Σred
test = Σred

s (5.11)

µblues = (3.5, 1.5)T Σblue
test = Σblue

s (5.12)

The second row of Figure 5.3 illustrates the generic and the user-specific classifier

applied to some new user-specific test data. As can be seen, the generic classifier falsely

classifies many samples from the red class, whereas the user-specific classifier makes only

few errors. Comparing the decision boundary of the user-specific classifier to the generic

training data, one can note that the bottom right quadrant is being falsely associated with

the red class, which could become problematic if the user changes his execution strategy

for the activity corresponding to the blue class. If only data from, e.g., a single activity

execution by the target user is available for training, it is unlikely that data points from

more than one execution strategy are present in the training data. Given the small number

of available user-specific labeled training data, it is therefore not advisable to rely on the

user-specific classifier exclusively. It is, however, possible to adapt over time as more

user-specific data becomes available.

The third row of Figure 5.3 shows two combined classifiers with different weights

wg. While a high weight of wg = 0.7 on the generic classifier (left) changes the decision
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boundary only minimally, a lower weight of wg = 0.5 seems to strike a good compromise

between generalization across individuals (the bottom left quadrant is now correctly

associated with the blue class) and modelling user-idiosyncratic behavior (most samples

from the red class are classified correctly). The bottom row shows the decision boundaries

of weighted K-Nearest-Neighbour classifiers with different mixing weights. Similar to

classifier combination, a high relative probability mass assigned to generic training data

changes the decision boundary of the original generic classifier minimally, but with an

appropriate choice of relative mass the classifier can adapt to the idiosyncrasies of the

target user.

5.5 Summary and Outlook

As manipulation activities allow for a potentially wide range of execution strategies and

recognition systems may be used by only a single individual, methods for adapting to the

target user’s idiosyncrasies seem promising. This chapter proposed three simple methods

for adapting a recognition system to a target user: classifier combination, joint SVM

training, and weighted K-Nearest-Neighbour. The relative advantages of these methods

with respect to the amount of training data, and time required for user-adaptation and

inference were discussed, and the behavior of user-adaptive classification methods has

been illustrated on a small toy example. This chapter concludes the discussion of the

methodology for multi-modal activity recognition proposed in this thesis. The next chapter

introduces datasets of manipulation activities that will be used for evaluation.
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Chapter 6
Datasets and Annotations

The methods for multi-modal activity recognition proposed in this thesis assume that ac-

celerometers are attached to objects that participate in manipulation actions, and that those

objects are in the field of view of a camera. The proposition of attaching accelerometers to

objects as opposed to a person’s body only started to gain interest in the wider research

community in recent years. As a result, none of the datasets that were publicly available at

the start of this project were suitable for evaluating the proposed methods.

As part of this project, two annotated datasets of food preparation activities were created

and were made publicly available for evaluation purposes1. More than 4h of data were

acquired and annotated, consisting of RGB-D video with a top-down view onto a work

surface and readings from tri-axial accelerometers attached to kitchen objects. The main

dataset which is called 50 Salads includes 50 sequences of people preparing a mixed

salad with two sequences per subject. Activities were split into a preparation, a core and

a post-phase, and these phases were annotated as temporal intervals. A snapshot from

this dataset is depicted in Fig. 6.1. The second dataset was annotated with ground-truth

accelerometer locations of all accelerometers in every frame, which enables quantitative

evaluation of accelerometer localization and tracking performance. This chapter reviews

related public datasets and discusses design decisions, the experimental setup, and the

1Datasets 50 Salads and Accelerometer Localization available at
http://cvip.computing.dundee.ac.uk/datasets/

http://cvip.computing.dundee.ac.uk/datasets/
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Figure 6.1: Snapshot from the 50 Salads dataset. Data from an RGB-D camera (top) and
from accelerometers attached to kitchen objects (middle) were recorded while 25 people
prepared two mixed salads each. Activities were split into preparation, core and post-phase,
and these phases were annotated as temporal intervals (bottom).

annotation protocol.

6.1 Existing Public Datasets

Several public datasets for benchmarking activity recognition algorithms exist in the fields

of wearable computing [43, 75, 82, 123] and computer vision [18, 59, 65, 67, 83, 88, 103].

One reason for the multiplicity of datasets is that the terms activity and recognition are used

for varied concepts. In many cases recognition means offline classification, where data

from an entire video clip is used to determine its activity class (e.g., KTH [88], YouTube

[59], Hollywood2 [65] and URADL [67]). In others, however, recognition additionally

includes identifying the temporal (and spatial) extent of an action, also referred to as
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activity detection or spotting (e.g., Darmstadt Daily Routines [43], AmbientKitchen [75],

TUM Kitchen [103], CMU-MACC [18], Opportunity [82], ICPR-KSCGR2 and MPII-

Cooking [83]). Datasets supporting activity spotting have the benefit that they can also

be used for pure classification experiments. The main dataset presented in this chapter

comprises sequences of activities that can be used for classification, activity spotting and

progress tracking experiments.

The term activity is used even more broadly and may refer to atomic gestures (e.g., grasp)

[82], simple, repetitive, articulated full body motions [88], fine-grained hand gestures [75],

or complex interactions of multiple objects [43]. Activities are also described with varying

level of detail and may contain only a verb (e.g., boxing, waving, cutting, adding) or

may additionally include the objects interacted with (e.g, picking up cafeteria food) [43].

Furthermore, the total set of activities considered in a dataset may be very broad (e.g.,

actions in movies [65] or web video clips [59]) or scenario-specific (e.g., car assembly-line

checkpoint [123] or food preparation [75]). This choice affects intra- and inter-class

variability. A classification problem with high inter-class variability and low intra-class

variability is easier than one with low inter-class variability and high intra-class variability.

The 50 Salads dataset contains activities with low inter-class variability and high intra-

class variability as well as detailed activity annotations including the identities of objects

involved (e.g., place tomato into bowl).

Recently, several datasets of kitchen activities have been released that combine visual

and non-visual sensor types. The CMU-MMAC dataset [18] contains data from multiple

cameras and body worn IMUs, BodyMedia and an eWatch. The cameras were placed

to overlook large parts of the kitchen as in a surveillance scenario. Participants wore a

suit with IMUs placed at joint locations and a helmet with an attached camera. Such a

sensor placement is arguably infeasible for practical assisted living solutions as the camera

positioning is obtrusive and wearing the suit is strongly disruptive. The TUM Kitchen

dataset [103] contains video and RFID data of people dressing a table. Cameras were

2http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/index.html

http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/index.html
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placed similarly to the CMU-MMAC dataset and RFID sensors were embedded at three

locations in the kitchen. Although participants did not have to wear a sensor-suit in this

scenario, the camera positioning was intrusive. The activities captured in this dataset did

not involve objects that cannot be equipped with RFID tags. One major challenge for

recognizing food preparation tasks is, however, that sensors cannot be attached to food.

The use of RFID readers in the kitchen is also very limited due to the fact that there is no

small number of distinct strategic locations that would suffice to be equipped with RFID

readers.

Pham et al. [75] replaced the handles of kitchen utensils with Wii-controllers capturing

tri-axial accelerometer data. The sensor setup for the datasets discussed in this chapter is

an extension of their approach with accelerometers attached to various kitchen objects and

an RGB-D camera facing the work-surface. Such a sensor setup is affordable and feasible

to integrate into a home kitchen.

6.2 50 Salads Dataset

6.2.1 Sensor Setup

Accelerometers were embedded in the handles of a knife, a mixing spoon and a peeler (see

Fig. 6.2). Further accelerometers were attached to a small spoon, a glass, an oil bottle, and

a pepper dispenser. Axivity WAX3 wireless accelerometers were used, which are equipped

with a rechargeable battery, microprocessor, 3-axis accelerometer, IEEE 802.15.4-2006

radio and a micro-USB port for recharging and configuration. These devices transmit

acceleration data at 50Hz with 16-bits per axis resolution. All samples were timestamped

upon arrival at the server. The recorded times were therefore subject to jitter and did not

correspond exactly to the time at which the samples were captured. Gyroscopes were also

considered, but as they significantly reduce battery life and their data exhibit strong artifacts

resulting from magnetic interference with kitchen equipment, they were not included in

this experimental setup.
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Figure 6.2: Wireless accelerometers (top left) were embedded into the modified handles of
kitchen utensils.

Figure 6.3: Camera placement in the laboratory kitchenette (left) and demonstration of
inconspicuous camera placement inside a wall cabinet (right).
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An RGB-D camera (Microsoft Kinect version 1) was mounted on the wall to have a

top-down view onto the work surface. The camera was attached to an adjustable arm on

a vertical bar, providing a high degree of flexibility in positioning (see Fig. 6.6). In a

domestic kitchen the camera could be placed inconspicuously inside (or with a wide-angle

lens potentially underneath) a wall cabinet (see Fig. 6.3). The camera was adjusted

manually to roughly align the work surface with the image plane. At an operating height

(distance between sensor and work surface) of 100cm and with 22cm distance to the wall,

the camera captured a 108cm wide area of the work surface. Visually aligned colour and

depth images were recorded at a resolution of 640× 480 pixels and at about 30 frames per

second. While the device captured colour and depth images usually a few milliseconds

apart, a given depth map was associated with the colour image whose timestamp was

closest in time in a post-processing step. Each pair of colour and depth images was

subsequently treated as if both images were taken at the same time.

Figure 6.4: Microsoft Kinect device illustration

The Kinect was initially released as a hardware extension for the XBox360 video game

console. The device has an RGB camera, a laser diode emitting near-infrared structured

light, a CMOS sensor, a microphone array, a motorized (vertically adjustable) head and a

3-axis accelerometer in the foot (see Fig. 6.4). The horizontal field of view is specified

as 58◦. An integrated system on a chip controls the IR emitter and computes a depth

image by stereo correlation of the CMOS sensor data and a prerecorded image of the
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emitted light pattern projected onto a planar surface at a known distance. The resulting

depth map has a per pixel resolution of 11 bits. A non-linear function maps these depth

values to metric units. After this non-linear mapping, the experimental operating range of

[0.50m, 1.00m] is represented by only about 250 distinct values. A USB 2.0 port serves

as data interface and power supply. Probably the main motivational factor for using the

Kinect is its compelling price. At the time of writing, the device is sold by major internet

vendors for U.S. $120, which is one order of magnitude lower than the price for a stereo

camera such as the Point Grey Bumblebee 2. This development suggests that 3D cameras

will soon find their way into a large number of homes and that the presence of these devices

at such private locations as the living room may find a growing toleration and acceptance.

6.2.2 Experimental Protocol

A pool of 27 subjects of varied age, ethnic background and cooking experience was

recruited from staff of the School of Computing at the University of Dundee. All subjects

prepared a mixed salad twice totalling 54 sequences. The data of two subjects had to be

excluded from the final dataset due to partial data loss. Preparing the mixed salad involved

preparing a dressing with salt, pepper, olive oil and balsamic vinegar, cutting ingredients

(cucumber, tomato, feta cheese and lettuce) into pieces, mixing ingredients, adding the

dressing to the salad and serving the salad onto a plate. Participants were given a specific

but varied task order to follow in each run. They were also told to perform all activities

within a fixed area on the work surface delimited with tape, that marked the border of the

camera’s field of view. While no specific quantities for ingredients were given, participants

were asked to prepare a single portion of salad for one person.

Repeated Task Execution

The participants were asked to prepare a salad twice for two reasons. Firstly, people exhibit

varying degrees of disorientation while preparing food if they are not within their usual

kitchen setting and without access to their own utensils. A laboratory kitchen setup may
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add to that further through the knowledge of being recorded. Therefore, it was expected

that subjects would behave more naturally in the second session as they would have had

time to get used to the laboratory kitchen in the first run. Secondly, recording subjects

multiple times enables the study of idiosyncrasies and the comparison of different learning

scenarios, e.g., same subject included in training data against cross-subject generalization.

Task Order Sampling

When observing a person performing multi-step activities that involve interacting with

a number of different objects, different orderings in which these steps are carried out

induce strong variation in the configuration and appearance of objects in the scene. In the

context of preparing a mixed salad the scene looks different after preparing the dressing,

depending on whether the ingredients of the salad have been cut and mixed already. In

order to build robust activity models for recognition it is convenient to have a balanced

dataset that contains roughly the same number of examples for all likely task-orderings. In

practice it is costly to acquire annotated video data of a large number of people performing

the same multi-step activity. Additionally, the task-orderings that the recorded sample

population chooses naturally are potentially highly imbalanced. Therefore, this chapter

proposes to sample task-orderings from a statistical activity model and ask participants to

follow the steps of a recipe in orderings generated by the model.

The statistical activity model that was used for the preparation of mixed salads is

illustrated in Figure 6.5. The model is based on Activity Diagrams used in computational

process specification and analysis. Every choice-node of the diagram (represented by a

horizontal bar with multiple outgoing arcs) is augmented by a probability distribution over

all options representing the probability of choosing each option when that choice-node

is reached. The probabilities in Figure 6.5 are set to be uniform to ensure a balanced

distribution of task-orderings.

Each participant was given a different ordering of tasks to follow in each session.

Surprisingly, few participants precisely followed the task ordering given to them although
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Figure 6.5: Activity Diagram: Task orderings were sampled from this model and given to
participants in order to increase variability of task orderings in the dataset.
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they were specifically instructed to do so. Our hypothesis is that ordering tasks within a

food preparation activity is strongly governed by habit and personal reasoning. In cases

where subjects failed to correctly follow the instructions in the second session, this error

may also be due to the subject following the memorized task ordering of the previous

session. Although this behavior was unintended, the availability of the instructed task

ordering together with the annotated activities may be used to experiment with detecting

deviations from the given task order.

Sensor Synchronization

As the timestamps of video frames and accelerometer samples are not synchronized, the

data were synchronized in a post-processing step. To facilitate sensor synchronization

an action was performed at the start and the end of all sequences that simultaneously

produces strong signals in the video and the accelerometer data; the experimenter beat

an accelerometer-equipped kitchen utensil repeatedly on the work surface. An annotator

manually marked the correspondences at the start and the end of all sequences. Using

least squares estimation, two temporal offsets per sequence were estimated based on these

correspondences, one for the start and one for the end. Linear interpolation was used for

temporal alignment within this interval.

6.2.3 Activity Annotation

The following 17 activities were annotated: add oil, add vinegar, add salt, add pepper,

mix dressing, peel cucumber, cut cucumber, place cucumber into bowl, cut cheese, place

cheese into bowl, cut lettuce, place lettuce into bowl, cut tomato, place tomato into bowl,

mix ingredients, serve salad onto plate and add dressing. Each activity was split into

three phases which were annotated individually in the form of a start time and an end

time corresponding to their temporal extent: pre-, core- and post-phase. Each activity

was associated with one of three stages in the recipe which were also annotated: prepare

dressing, cut and mix ingredients and serve salad. In total 966 activity instances were
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Activity #Inst. #Frames Core Label in Experiments
add oil 55 27813 8161 add oil
add vinegar 54 23657 6572 -
add salt 53 11369 4995 -
add pepper 55 12912 6123 give pepper
mix dressing 61 19492 14295 mix dressing
peel cucumber 53 62141 38613 peel cucumber
cut cucumber 59 49853 38787 cut into pieces
cut cheese 56 50680 26001 cut into pieces
cut lettuce 61 53313 28847 cut into pieces
cut tomato 63 68347 50768 cut into pieces
place cucumber into bowl 59 16800 9071 place into bowl
place cheese into bowl 53 12753 6305 place into bowl
place lettuce into bowl 61 15159 7856 place into bowl
place tomato into bowl 62 13547 6418 place into bowl
mix ingredients 64 22917 16050 mix incredients
serve salad onto plate 53 35230 19110 serve salad
add dressing 44 22428 12092 add dressing
Total 966 518411 300064

Table 6.1: Dataset size in terms of activity instances and video frame counts.

annotated. Annotations spanned more than 500k video frames of which more than 300k

frames represented the core-phase of an activity. Table 6.1 lists the numbers of instances

and frames for all activities.

The pre- and post-phases of an activity include grabbing, moving and placing utensils

and ingredients. The core phase captures actions that are essential. Taking add oil as

an example, the pre-phase might consist of grabbing the oil bottle, moving it over the

dressing glass and screwing it’s lid off. The core phase represents tilting the bottle and

pouring oil into the glass. Screwing the lid back on, moving the bottle and placing it

on the work surface would be annotated as the post-phase of the add oil activity. The

annotated temporal extent of a phase of an activity is delimited by distinct events at the

start and end of these phases. The start of the pre-phase of the add oil activity, for example,

would be marked as the frame in which the oil bottle was first touched as opposed to the

frame in which the hand reaches out in order to grab the bottle. Annotations are therefore

unambiguous and repeatable.
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6.2.4 Use Cases

This dataset can be split in various ways into training and test data in order to investigate

different generalization problems. Cross-subject generalization is a common problem

investigated by the activity recognition community, where all data of any subject is used

either for training or for testing but not both. This is a hard problem in the context of

food preparation due to strong personal preferences regarding how activities are executed

(idiosyncrasies). Intra-subject generalization is a comparably easier problem given the

same amount of training data. Here, only very limited data of a single subject is available.

Nevertheless it would be interesting to evaluate intra-subject generalization on this dataset

as having very limited training data of the target subject might be a good representation of

real-world conditions for, e.g., a situated prompting system.

As the dataset consists of sequences of steps involved in the recipe, it can be useful for

evaluating activity spotting, activity recognition, sequence analysis and progress tracking.

As it involves data from accelerometers and RGB-D video data, the dataset can be used for

evaluating sensor fusion methods and methods for transfer learning. Further potential use

cases include user-adaptation and skill assessment.

While inferring the full specification of an activity (verb, phase and objects involved) is

a long-term objective, it is questionable whether current activity recognition methods are

powerful enough to do this. In order to gradually approach this goal, however, the available

detailed annotations may be used to automatically formulate easier classification problems.

For example, parts of the description such as the ingredients or the activity-phase may be

ignored, mapping distinct annotations onto the same label. One such simplified recognition

problem that will be used in the evaluation chapter of this thesis is discussed below.

The choice of ontology by which activities are categorized can substantially influence

recognition performance. Consider, for example, the two activities mixing the salad

dressing and mixing the completed salad. They may be regarded as belonging to the same

general activity of mixing ingredients. The exhibited motion pattern when performing

these activities is similar. Based on low-level motion features alone it would therefore
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be difficult to differentiate between mixing the dressing and mixing the completed salad,

and combining these activities in the general activity mixing ingredients simplifies the

recognition task. However, the kitchen utensils used while performing these two activities

are different. While participants tend to move the dressing glass and the small spoon

when mixing the dressing, the large spoon and the salad bowl are moved when the final

salad is being mixed. As the sets of utensils moved in these two activities are mutually

exclusive, the task of differentiating these activities based on object use is comparably easy.

Therefore, assigning a common class label to these activities renders the recognition task

more difficult.

For comparison of features from accelerometers and vision, and an investigation of

various combinations of feature types, a recognition problem with C = 10 activity classes

was used in this thesis: add oil, give pepper, mix dressing, mix ingredients, cut into pieces,

place into bowl, peel cucumber, serve salad, dress salad and NULL, where NULL indic-

ates that none of the activities of interest is happening. The mapping from annotated labels

to activity classes used for evaluation is shown in Table 6.1. Each activity class includes the

pre-, core- and post-phases of each annotated label. It was decided to exclude add pepper,

as there was no accelerometer attached to the pepper dispenser and it would therefore be

impossible to recognize this activity from accelerometer data. Where annotated labels only

differed in the maninpulated ingredient, these labels were mapped to the same activity class

(i.e., cut into pieces and place into bowl). While recognizing the manipulated ingredient

is ultimately necessary to track through a recipe, this thesis focusses on ingredient-agnostic

activity models and leaves this aspect to future work. This mapping is of course only one

of many recognition problems that could be investigated using this dataset.

6.3 A Dataset for Accelerometer Localization

Prior work by other authors on accelerometer localization [64, 91] evaluated accelerometer

localization only qualitatively. In order to compare different localization algorithms,
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Figure 6.6: Accelerometer Localization: slightly modified experimental setup. Laboratory
kitchenette with Kinect facing the work surface and accelerometers attached to three
kitchen utensils with tape (top left).

there is a strong need for datasets that provide the necessary annotations for quantitative

evaluation. This thesis makes one contribution in this direction by offering a challenging

dataset with ground-truth accelerometer location annotations.

The experimental setup was similar to the one discussed in the previous section (see

Fig. 6.6). RGB-D video data and data from three accelerometers that were attached to a

knife, a spoon and the rim of a bowl, respectively, were recorded while a person prepared

a mixed salad. Note that some devices were sometimes moved at the same time (e.g., the

spoon and the bowl move concurrently while the salad is being mixed before serving).

Ten ingredients were used in total to prepare the mixed salad: beetroot, cheese, courgette,

lettuce, purple onion, and tomatoes, as well as balsamic vinegar, olive oil, salt and pepper

for the dressing.

The recorded sequence contains 13,263 frames of combined colour and depth data and

31,346 samples of 3-axis acceleration data. The locations of the three accelerometers

were annotated in all frames by hand. For each pair of video frame and accelerometer, a
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point location in image coordinates was marked by manually clicking on the image at the

estimated location of the geometric centre of the device. As accelerometers are covered by

tape and frequently occluded by the participant’s hand, it cannot be assumed that these

labels are exact. Nevertheless, from visual inspection it can be confirmed that the marked

locations are reasonably close to the true centre locations for our purposes.

6.4 Summary and Outlook

This chapter introduced two datasets with a novel combination of RGB-D video data

and data from accelerometers attached to objects. 50 Salads is a large dataset of 50

sequences of complex manipulation activities in the kitchen. It can be used to evaluate a

wide variety of machine learning problems including sensor fusion, activity recognition

and user-adaptation, which are of particular interest for this thesis. The second dataset

includes ground-truth annotations of accelerometer locations, which are necessary for

quantitative evaluation and comparison of visual accelerometer localization algorithms.

The next chapter presents evaluation results of the methods presented in this thesis using

the datasets presented in this chapter.
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Chapter 7
Evaluation

This chapter validates and comparatively evaluates the methods proposed in this thesis on

the datasets introduced in the previous chapter. Section 7.1 evaluates the accuracy of the

accelerometer tracking algorithm introduced in Chapter 3 and quantitatively compares it to

alternatives with different methods for hypothesis generation, similarity estimation, and

similarity re-initialization. Section 7.2 formulates an activity recognition problem with 10

activity classes that were derived from the detailed annotations of the 50 Salads dataset,

and compares the recognition performance of features from different sensor types and

different sensor fusion techniques. The models proposed for user-adaptive classification

are evaluated in Section 7.4.
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ID Description #Frames
1 Knife Synchronization Signal 203
2 Moving Spoon From Bowl To Worktop 25
3 Spoon Mixing Dressing 310
4 Knife Slicing Beetroot 296
5 Knife Scraping Beetroot Into Bowl 125
6 Knife Scraping Courgette Into Bowl 45
7 Knife Scraping Cheese Into Bowl 106
8 Knife Scraping Green Salad Into Bowl 85
9 Knife Slicing Green Salad 45

10 Knife Slicing Green Salad 2 170
11 Knife Scraping Green Salad Into Bowl 123
12 Knife Dicing Tomatoes And Moving Into Bowl 1133
13 Spoon Mixing Salad 375
14 Spoon Mixing Salad 2 95
15 Spoon Serving Salad Into Plates 798
16 Knife Synchronization Signal 2 233

Total 4167

Table 7.1: Test Sequences: Subsequences with at least one accelerometer measuring
substantial accelerations over an extended period of time.

7.1 Accelerometer Localization and Tracking

In contrast to published work by other authors on accelerometer localization [64, 91] which

evaluated localisation performance only qualitatively, this thesis reports quantitative evalu-

ation using the accelerometer location annotations for the dataset introduced in Section

6.3, a single 13,263 frame sequence of a person preparing a mixed salad. For quantitative

evaluation of different algorithm configurations the average per frame Euclidean distance

of an estimated accelerometer location to the ground truth point in terms of pixels in the

image plane was used.

First, evaluation was performed on a set of easy subsequences from the dataset. An

accelerometer is arguably easier to localize when it measures strong acceleration than

when it is stationary and may not send any data. A set of 16 subsequences was identified

in the video during which at least one accelerometer measured strong acceleration over

an extended period of time. These subsequences are listed in Table 7.1. The localization

performances reported in the following sub-sections were based on testing each of these
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subsequences separately, re-initializing the algorithm at the start of each subsequence. The

algorithm was tested on the task of localizing the single accelerometer that is in motion

throughout the entire subsequence. Trajectories from feature point tracking were compared

with trajectories from grid-sampling and dense optical flow. The distance of points from

the camera along the normal of the image plane was acquired from depth maps (variable)

or a constant depth for all pixels was defined manually (fixed).

In a second experiment, the accelerometer tracking algorithm that showed best perform-

ance in the previous experiment was evaluated on the entire video on the task of localizing

all accelerometers in every frame. In this experiment different methods for similarity

re-initialization were compared.

7.1.1 Sparse vs. Dense Optical Flow

For the first stage of the localization pipeline two different methods to extract point feature

trajectories from video data were compared: sparse point feature tracking and dense

optical flow (see Section 3.3). For a fair comparison, the parameters of each method

were optimized empirically. Dense trajectories were initialized on a grid with dG = 24

pixels, initializing 336 trajectories at equidistant locations, and were terminated based

on a threshold τd = 5 pixels. For sparse feature point tracking, the maximum number of

trajectories was set to Nmax
T = 96 with a minimum distance at initialization of dminI = 14

pixels.

The fixed depth was set to the estimated operating height ẑ = 0.9m, which corresponds

roughly to the operating height of the camera. Recall that this distance is used to convert

image into world (metric) coordinates in Eq. (3.4). In all experiments accelerations were

estimated from Gaussian-filtered locations with σ = 0.3
fvid

and a temporal decay α = 0.9982

was used.

Table 7.2 shows evaluation results for these configurations using the depth provided

by the camera (variable) and using a fixed depth. While the region of interest as indicated

in Fig. 3.1 was used to compare effects of fixed and variable depth on localization
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KLT Dense Optical Flow
Depth ROI Depth ROI

ID #Frames fixed var. off fixed var. off
1 203 74 56 65 32 50 42
2 25 206 313 217 92 99 182
3 310 23 28 24 25 35 33
4 296 19 28 59 49 32 61
5 125 143 215 139 53 46 66
6 45 89 259 118 67 94 152
7 106 67 79 128 89 84 67
8 85 138 146 181 48 69 73
9 45 131 213 71 92 74 165

10 170 66 304 210 36 91 196
11 123 65 81 132 93 114 96
12 1133 60 184 209 23 179 20
13 375 62 63 66 97 105 173
14 95 81 87 235 54 76 150
15 798 135 265 141 52 104 108
16 233 38 338 57 74 85 80

Total 4167 76 167 134 49 106 79

Table 7.2: Sparse vs. Dense Optical Flow: Different trajectory construction methods with
depth from the camera variable and fixed. Performance is reported as average Euclidean
distance of estimated accelerometer location to ground truth in pixels.

performance, results based on the entire image region (ROI off) with fixed depth are also

reported.

It is obvious that the effect of frames far in the past on the present similarity measure

needs to be limited, but there are several different ways to model this behavior. Section 3.5.2

introduced a temporal decay through which the contribution of past frames to the similarity

measure is reduced by a multiplicative factor α. Figure 7.1 shows average localization

accuracy obtained for various values of the decay parameter α. The average Euclidean

distance of estimated accelerometer location to the ground-truth in pixels reported is the

average distance over all subsequences. The result of each test was weighted by the number

of frames in the corresponding subsequence.
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Figure 7.1: Temporal Decay: the effect of temporal decay on accelerometer localization
accuracy was evaluated by varying the multiplicative factor α.
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Discussion

Intuitively, a larger number of trajectories is expected to increase localization accuracy as

the true trajectory is more likely to be found in the sample. Nevertheless, in preliminary

experiments, using more than 96 active trajectories with KLT and more than 336 initial

trajectories with dense optical flow has not been beneficial to localization performance.

Presumably a lower number of trajectories increases robustness against artifacts in the

estimated flow fields.

There are four major observations resulting from these experiments.

1. Trajectories constructed from dense optical flow estimates are shown to perform

considerably better than those from sparse tracking. It is suspected that the substantial

difference in performance to KLT is due to the smoothness of the dense flow field

which reduces the number of false feature correspondences, and the better coverage

of low-texture regions obtained with uniform sampling.

2. The 3D extension of trajectories as proposed here - annotating trajectories with the

depth from the Kinect - does not outperform localization based on a user-defined

constant depth. Acceleration sequences constructed with measured depth performed

considerably worse than those assuming a constant depth, for trajectories from KLT

tracking and dense optical flow alike. The depth maps produced by the camera are

clearly not reliable enough for extending point trajectories to 3D. This might be

due, in part, to noisy depth measurements, holes in the depth maps on areas that

lie in the shadow of the structured light pattern, and point trajectories frequently

crossing depth-discontinuities. A more sophisticated method of extending point

feature trajectories to the 3D case, in which depth-discontinuities and noise in the

raw depth maps are specifically taken into account, could improve these results,

especially for scenarios in which the accelerometer is moved along the camera’s

view axis.

3. Narrowing down the location search space with a smaller region of interest in the
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image increases localization accuracy as expected. While the whole image region

also covers some space in front of the work surface, which is in large parts occupied

by the participant’s body, this region is completely cropped in the latter configuration,

eliminating a large fraction of sources of confusion for the localization algorithm.

4. Localization accuracy decreased drastically with α� 1. The performance gain com-

pared to no temporal decay was rather small (1.04 pixels on average), which might

be due to the limited length of the test-sequences. A more significant improvement

is expected when running the accelerometer localization algorithm over an extended

period of time.

As point trajectories from dense optical flow with fixed depth outperformed all other

configurations on average this configuration was used in all subsequent experiments.

7.1.2 Comparison to Normalized Cross-Correlation

The similarity measure proposed in this thesis, subsequently called Temporal Decay

Thresholding (TDT), was also compared to normalized cross-correlation (NCC) as used

by Maki et al. [64]. For a fair comparison between NCC and the proposed similarity

measure, NCC was applied to trajectories constructed from dense optical flow. Estimated

accelerations along point trajectories were correlated with the sub-sampled acceleration

data captured by an accelerometer. Results of accelerometer localization using NCC

with varying length of temporal sliding window are presented in Figure 7.2. The average

Euclidean distance of estimated accelerometer location to the ground-truth in pixels here

is the average over all frames in all subsequences. Localization accuracy reached its

maximum at a window size of about 150 frames with an average Euclidean distance to the

ground-truth of 114 pixels. This time window corresponds to an interval of five seconds.

TDT substantially outperformed NCC with an average distance to the ground truth of 49

pixels.

Cumulative distributions over the distances of estimated locations to ground-truth are
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Figure 7.2: Localization accuracy of NCC with varying length of temporal sliding window.
The best performance obtained with TDT is plotted for comparison.

given in Figure 7.3 for the proposed method (DOF and KLT with fixed depth) and NCC

using DOF trajectories. The plotted NCC result was obtained using a temporal window size

of 150 frames; this gave the lowest average distance from ground-truth (114 pixels) of all

the window sizes tried in the previous experiment. Although the proposed method leaves

room for improvement, it clearly outperforms NCC, increasing the fraction of predictions

within a 10 pixel radius from 12% to 50% and with a 30 pixel radius from 50% to 80%.

7.1.3 Long-Term Accelerometer Tracking

In order to compare the accuracy of long-term accelerometer tracking with different

methods for re-initializing hypothesis scores after an accelerometer has been stationary,

the estimated accelerometer location in every frame of the entire video was evaluated

(Figure 7.4). No Re-Initialization and Cold Start (initialization to St = 0) were compared

to two methods for re-initialization based on the similarity map M: (i) assigning the
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(a) the big picture

(b) enlarged view on interval [0,30]

Figure 7.3: Comparison of accelerometer localization precision evaluated as the cumulative
distribution of distances of estimated locations to the ground-truth with the proposed
method (DOF-TDT and KLT-TDT) and normalized cross-correlation (DOF-NCC).
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Figure 7.4: Long-term accelerometer tracking accuracy obtained with multiple methods
for similarity re-initialization.

score of the Nearest Neighbour and (ii) kernel density estimation (KDE) (see Section

3.6, p. 43). KDE did not perform better than other methods with σ = 1, . . . , 10. (Only

KDE results for σ = 10 were plotted for clarity). While none of the explored strategies

clearly outperformed the others, re-initialization from the Nearest Neighbour inM and

Cold Start showed a considerably higher fraction of estimates in the range up to 25 pixels

and approached saturation closer to the ground-truth location. As the Nearest Neighbour

strategy slightly outperformed cold start, this method was employed in all subsequent

experiments.

7.2 Single Modality Activity Recognition

7.2.1 Evaluation Protocol

For activity recognition it is assumed that no two activities occur simultaneously. In rare

cases the annotated temporal intervals of subsequent activities overlap. As the frames in
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which this situation occurs account for only 0.09% of the data, these samples were skipped

for both training and testing. All remaining frames are unambiguously associated with a

single class label.

In order to test cross-subject generalization, algorithms were evaluated by 5-fold cross-

validation. Although 10-folds are often used (as argued in [49]), 5-fold cross-validation

was chosen to keep the computational cost manageable. Each test set consisted of two

sequences of each of five participants; the corresponding training set consisted of two

sequences of each of the remaining 20 participants.

Performance Measures Performance was measured as mean precision, mean recall and

their harmonic mean (f-measure). For an unbiased estimate of recognition performance

based on unbalanced test data, class precision and recall were weighted inversely propor-

tional to their occurrence in the test set when aggregated. Given the number of true positive

(TP), false positive (FP) and false negative (FN) classification results, precision is defined

as TP
TP+FP

and recall is defined as TP
TP+FN

. Mean precision and recall over all classes

and cross-validation partitions were computed by first summing TP, FP and FN over all

partitions for each class separately, then applying the formulas for precision and recall on

the sums and finally estimating the arithmetic mean over all classes, as argued in [25]. The

arithmetic mean over all classes assigns equal importance to all classes regardless of their

prevalence in the test data.

Codebook Learning Codebooks for Absolute Tracklets and RETLETS were learned

from a subsample of 100k tracklets extracted from training data. K-means clustering was

applied to the sampled data using a GPU implementation of exact nearest neighbor search.

K-means was initialized 8 times and the dictionary with minimal reconstruction error kept.

Feature Extraction Features were extracted from temporal windows of 154 video

frames or 256 accelerometer samples (∼ 5s) centred on each video frame. Temporal

windows were shifted by one frame at a time, and features were extracted from each
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Figure 7.5: Training sets were constructed by extracting features from temporal sliding
windows shifted by one frame at a time, treating each window independently. The feature
vector extracted from a temporal window was assigned to the ground-truth label at the
window’s center. From each activity class 500 examples were sampled at random.

window independently. Each temporal window was assigned to the ground-truth label at

the window’s center. This process is illustrated for the training data of one test partition

in Figure 7.5. For Reference Tracklet Statistics a temporal window of 16 video frames

was used, a trajectory length commonly used for visual action recognition [110]. In order

to create a balanced training set for SVM training, a stratified random sub-sample of all

training data points was used which contained 500 samples from each class and 5000

samples in total.

Parameter Search The free parameters of SVM and random decision forest classifiers

were determined via 5-fold cross-validation on each training set. Each training set was

split into 5 partitions containing both sessions of 4 subjects. Each of these partitions was

used for validating a model that has been trained on the remaining 16 subjects. Random

Decision Forest model parameters were selected out of a set of models with 20 trees, the

values {8, 10, 12} for the maximum number of tree levels, {1
3
d, 2

3
d, d} for the number

of weak classifiers tested per node (where d is the number of feature dimensions) and

10 thresholds per weak classifier. For Reference Tracklet Statistics and Accelerometer

Statistics parameter search for the RBF kernel parameter γRBF was performed through
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Feature Type Precision Recall f-measure
Absolute Tracklets 0.37 ± 0.03 0.40 ± 0.02 0.38
Object Use 0.43 ± 0.03 0.50 ± 0.02 0.46
Accelerometer Statistics 0.63 ± 0.07 0.65 ± 0.03 0.64

Table 7.3: Comparison of recognition performance using visual features (Absolute Track-
lets, D = 500 visual words) and accelerometer features (Object Use and Accelerometer
Statistics).

5-fold cross-validation on the training set of the first test partition prior to evaluation. It was

set to γAS = 0.03125 for Accelerometer Statistics and γRTS = 2 for Reference Tracklet

Statistics in all experiments.

7.2.2 Accelerometer vs. Visual Features

Recognition performance obtained with Accelerometer Statistics, Object Use and Absolute

Tracklets was compared using SVM classifiers. For Absolute Tracklets a grid distance

of dG = 5 pixels was used. The results are presented in Table 7.3. The results confirm

that the problem under investigation is sufficiently challenging. The best performance of

63% precision at 65% recall was obtained with Accelerometer Statistics, whereas chance

is 10%. This result confirms that acceleromter-based activity recognition can yield good

performance using features that are fast to extract from the temporal domain and require no

learning as proposed in [77]. Visual motion features showed surprisingly low recognition

performance of 37% precision at 40% recall.

7.3 Multi-Modal Activity Recognition

This section investigates the combination of data from accelerometers and video through

features from accelerometer localization and by combining multiple feature types at

different stages in the recognition pipeline.
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Features from Individual Sensor Types Precision Recall
Object Use 0.41 ± 0.03 0.48 ± 0.02
Acceleration Statistics 0.62 ± 0.05 0.64 ± 0.04

Features from Accelerometer Localization
Device Locations* 0.26 ± 0.02 0.22 ± 0.03
Reference Tracklet Statistics* 0.52 ± 0.05 0.49 ± 0.04

Feature Vector Concatenation
Object Use

+ Accelerometer Statistics 0.63 ± 0.05 0.66 ± 0.03
Reference Tracklet Statistics*

+ Accelerometer Statistics 0.67 ± 0.05 0.67 ± 0.03
Object Use

+ Reference Tracklet Statistics*
+ Accelerometer Statistics 0.67 ± 0.05 0.68 ± 0.03

Classifier Combination Comb. Method
Object Use Sum 0.43 ± 0.07 0.49 ± 0.03

+ Acceleration Statistics Product 0.44 ± 0.02 0.50 ± 0.03
Reference Tracklet Statistics* Sum 0.63 ± 0.04 0.67 ± 0.03

+ Acceleration Statistics Product 0.65 ± 0.03 0.67 ± 0.03
Object Use Sum 0.62 ± 0.04 0.65 ± 0.02

+ Reference Tracklet Statistics* Product 0.64 ± 0.03 0.66 ± 0.03
+ Acceleration Statistics RDF 0.65 ± 0.05 0.67 ± 0.03

* sensor-fusion via accelerometer localization

Table 7.4: Activity recognition performance (mean precision and mean recall) achieved
with various features, fusion methods and Random Decision Forest classifiers. Intervals
represent ± one standard deviation. Device Locations and Reference Tracklet Statistics
use multi-modal fusion by accelerometer localization. Sum, product and RDF (Random
Decision Forest) indicate classifier combinations by aggregating class posterior distribu-
tions.

Modality Fusion with Random Decision Forests

Random Decision Forest classifiers are used to evaluate (i) fusion via accelerometer

localization, (ii) early fusion via feature vector concatenation, and (iii) late fusion using

sum-rule, product-rule, and a secondary Random Decision Forest classifier.

The recognition results obtained with various features and fusion methods are shown in

Table 7.4. The top section shows the recognition performance for features from accelero-

meters. Performance obtained with Object Use and Accelerometer Statistics is comparable
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to classifying the same features via SVMs. Unfortunately, Random Decision Forest classifi-

ers applied to histograms (Absolute Tracklets and RETLETS) did not perform considerably

better than chance (not shown). Decision trees with axis-aligned weak learners and a depth

in the order of ten seem to be not flexible enough to learn realistic decision boundaries.

This suggests that a subset of 10 − 20 histogram bins are insufficient to distinguish the

patterns of activity under investigation.

The second section in Table 7.4 shows recognition performance with two feature types

that rely on multi-modal fusion using accelerometer localization. Recognition accuracy

for Device Locations was lowest among all configurations tested (26% precision and 22%

recall). This illustrates that objects are positioned quite freely on the work surface and

that their locations do not provide strong cues for activity recognition even in this dataset

where all sequences were recorded in a single (confined) kitchen setup involving the same

utensils. The lower performance of Reference Tracklet Statistics compared to Acceleration

Statistics can be attributed to the shorter temporal window used for feature extraction

(0.53s compared to 5.12s for Acceleration Statistics) and imperfect localization.

The combination of different features prior to classification, shown in the third section

of Table 7.4, consistently improved recognition performance compared to the individual

feature types. These observations strongly support the hypothesis that robust activity

recognition benefits from integrating multiple types of cues. It is particularly notable that

Reference Tracklet Statistics considerably increase recognition performance when com-

bined with Accelerometer Statistics. As both feature types encode motion characteristics of

accelerometer-equipped objects, one could have expected that these feature types capture

no complementary information and recognition performance would not improve when

combined. This observation suggests that an accelerometer’s motion with respect to other

entities in the scene, e.g. a stationary camera or objects interacting with the accelerometer,

represents useful information that is not captured by acceleration data with respect to the

accelerometer’s local reference frame.

Combining class posterior distributions (bottom section of Table 7.4) using the sum-rule
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Figure 7.6: Confusion Matrix for the method that achieved highest activity recognition
accuracy among all configurations considered in Table 7.4. A Random Decision Forest
classifier was trained on concatenated Object Use, Acceleration Statistics and Reference
Tracklet Statistics features (early fusion). Rows and columns represent ground-truth and
predicted class labels, respectively. Numbers represent frequencies in percent and cell
gray-levels linearly encode frequencies from 0% (black) to 100% (white).

or the product-rule only showed minor improvement compared to the individual feature

types. Note, however, that inference in Random Decision Forests trained on combined

features is faster by a factor K than combining classifier outputs of K feature types. Due

to the computationally demanding model selection experiments using Random Decision

Forests as secondary classifiers were only performed on the combination of features that

achieved highest recognition accuracy with early fusion. Here, recognition accuracy was

similar to that obtained with early fusion of the same features.

These results strongly suggest to combine feature types prior to classification: early

fusion consistently outperformed performance obtained with individual feature types.

The confusion matrix of test results obtained with a Random Decision Forest classi-

fier trained on concatenated Object Use, Acceleration Statistics and Reference Tracklet

Statistics features is illustrated in Figure 7.6. This configuration achieved highest activity

recognition accuracy among all configurations considered in Table 7.4. For almost all activ-



109

Figure 7.7: Recognition results using Reference Tracklet Statistics, Absolute Tracklets
and RETLETS with variation in dictionary size and number of training samples. Note that
as Reference Tracklet Statistics are not histograms their performance is constant across
dictionary sizes (represented as a horizontal line in the Figure on the left).

ities recall was above 50%, except for the NULL-activity (42%) and mix ingredients

(49%). Considering the high intra-class variability and the fact that no temporal activity

modelling was used these results are very promising. As the pre- and post-phases of

activities involve re-organizing objects on the work surface, there is strong confusion

between NULL and all other activities. The large spoon was often used to carry out

the mix ingredients and serve salad activities. As the way the large spoon was moved

during these activities was also very similar they were frequently confused. The notice-

able confusion between cut into pieces and place into bowl may be due to the knife

often being used to scrape chopped ingredients off the chopping board into the bowl.

Stronger motion features or a representation of spatial relations between objects might

help distinguish these activities.

Absolute Tracklets vs. RETLETS

The three feature types encoding visual motion Reference Tracklet Statistics, Absolute

Tracklets, and RETLETS were comparatively evaluated with varied dictionary size for Ab-

solute Tracklets and RETLTS, and varied number of training samples using SVM classifiers.

As shown in Figure 7.7, the feature types that exploit information from accelerometer loc-
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Figure 7.8: Average precision and average recall using RETLETS with varied spatial
weighting parameter σ (in pixels).

alization (Reference Tracklet Statistics and RETLETS) considerably outperformed Absolute

Tracklets, which are extracted exclusively from video. The proposed feature representation

(RETLETS) strongly outperformed Absolute Tracklets and Reference Tracklet Statistics.

This result strongly suggests that relative motion is important for recognizing the activities

under investigation, and suggests that RETLETS capture this information well. Dictionary

size had less effect on recognition performance for RETLETS compared to Absolute Track-

lets. Performance saturated at about 10k training samples, corresponding to an expected

overlap of ∼ 75% between temporal windows.

Spatial Weighting

The impact of applying spatial re-weighting to relative tracklets on recognition performance

was evaluated by constructing relative histograms over 100 dictionary words with varied

spatial weighting parameter σ (see Equation (4.3), p. 50). Average precision and average

recall are plotted in Figure 7.8. Performance rose sharply from σ = 30 to σ = 360 pixels.

From that point onwards recognition performance was relatively unaffected, falling a little.

A possible explanation is that trajectories that were very close to the reference trajectory

were likely to exhibit motion similar to the reference trajectory. A relative description

of such motion is therefore uninformative. Trajectories that were very far away from the
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Individual Features Precision Recall f-measure
Absolute Tracklets 0.37 ± 0.03 0.40 ± 0.02 0.38
Reference Tracklet Statistics 0.54 ± 0.04 0.51 ± 0.03 0.53
RETLETS 0.61 ± 0.02 0.61 ± 0.03 0.61
Accelerometer Statistics 0.63 ± 0.07 0.65 ± 0.03 0.64

Feature Vector Concatenation
Baseline
Accelerometer Statistics

+ Absolute Tracklets 0.65 ± 0.04 0.66 ± 0.03 0.66
Accelerometer Statistics

+ Reference Tracklet Statistics 0.66 ± 0.06 0.67 ± 0.03 0.67
Accelerometer Statistics

+ RETLETS
+ Absolute Tracklets 0.67 ± 0.03 0.69 ± 0.03 0.68

Accelerometer Statistics
+ RETLETS
+ Absolute Tracklets
+ Reference Tracklet Statistics 0.69 ± 0.04 0.71 ± 0.03 0.70

Table 7.5: Recognition performance obtained using combinations of Absolute Tracklets
and RETLETS with Reference Tracklet Statistics and Accelerometer Statistics.

reference trajectory on the other hand were less likely to interact with the reference object,

justifying the spatial weighting applied here. In all subsequent experiments, RETLETS are

encoded with 100 codewords and spatial weighting parameter σ = 360 pixels.

Feature Combination with Support Vector Machines

This section investigates recognition performance using SVMs and various combinations

of feature types. Table 7.5 shows recognition results obtained by combining Absolute

Tracklets and RETLETS with Reference Tracklet Statistics and Accelerometer Statistics

using the MeanKernel (see Section 4.6.2, p. 61). Among the individual feature types

under investigation, Accelerometer Statistics achieved highest recognition performance.

Combinations of feature types consistently showed a considerable performance increase

compared to individual features. The best performance was achieved by combining Ac-

celerometer Statistics with RETLETS and Reference Tracklet Statistics. This approach of

fusing information from video and accelerometer data clearly outperformed the combina-
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tion of features extracted from each sensor type independently (Accelerometer Statistics

+ Absolute Tracklets in Table 7.5), the traditional early fusion approach, which showed

lowest performance among all feature combinations investigated. This result confirms the

hypothesis of this thesis that careful combination of data from video and accelerometers

via accelerometer localization can considerably improve activity recognition performance.

It is interesting to note that RETLETS performed slightly worse than Accelerometer

Statistics individually, which may suggest that the additional cost associated with extracting

dense tracklets from video, localizing accelerometers, and extracting relative tracklets is

unjustified. The traditional sensor fusion approach of concatenating features extracted

from each sensor type independently, however, only showed comparable performance to

Accelerometer Statistics, and strong improvements are only observed with combinations

of features that utilize accelerometer localization. This comparison strongly suggests that

features from accelerometer localization establish a crucial link between features extracted

from each sensor type independently, which enables the classifier to discover cross-modal

relations.

Kernel Combination The results from comparing three methods for kernel combination

SumDistance, MeanDistance, and SumKernel are shown in Table 7.6. While the

effect of kernel combination on recognition accuracy appears to be minor, SumKernel

outperforms the other two methods for two combinations of feature types and shows

competitive performance for the other two combinations.

7.4 User-Adaptive Classification

This section reports evaluation results on the user-adaptive classification methods intro-

duced in Chapter 5. For generic classifier training a stratified sample of Ng = 5000

data-points was used. User-adaptive classifiers were trained on the generic training set and

an additional user-specific training set consisting of datapoints from one sequence of the

target user. For each user in the test set, two models were evaluated using datapoints from
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Feature Type SumDistance MeanDistance SumKernel
Acceleration Statistics

+ Absolute Tracklets 0.66 0.66 0.66
Acceleration Statistics

+ Reference Tracklet Statistics 0.64 0.65 0.67
Acceleration Statistics

+ RETLETS 0.68 0.67 0.68
Acceleration Statistics

+ Reference Tracklet Statistics
+ RETLETS 0.68 0.69 0.70

Table 7.6: Recognition performance as f-measure obtained with different methods for
kernel combination.

one sequence of the target user as user-specific training data and the other sequence for

testing, and vice versa. As some activities only last a few frames and some might not occur

at all in any particular sequence, the user-specific training data was highly imbalanced.

An approximately-stratified sample was taken from the user-specific training sequences.

Let Ns denote the target size of the user-specific training set and C = 10 denote the

number of activity classes. An exactly-stratified sample would include Ns/C datapoints

from each class. The approximately-stratified sample included all datapoints from activity

classes for which less than Ns/C datapoints were available, and a stratified sample of

datapoints from all other classes. Let Nc denote the number of datapoints from each class

c = 1, . . . , C in the approximately-startified sample. For SVM training the cost parameter

was set differently for each class to be inversely proportional to the number of datapoints

from that class in the training set: Cc = Ns

|C|Nc
.

7.4.1 Adaptation by Classifier Combination

Adding more training data to a learning algorithm may improve recognition accuracy

regardless of whether these additional training data are from the user the system is evaluated

on or not. To investigate whether the model actually learns user-specificities a randomized

control trial was performed, in which the adaptive model trained on the same subject was

compared with an adaptive model trained on a randomly selected other subject from the test
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Figure 7.9: Recognition performance of user adaptation via classifier combination with
varied mixing weight wg (left), and varied number of generic training subjects using
wg = 0.7 (right).

set. These cases are referred to as Specific Individual and Random Individual, respectively.

Any performance increase observed after training on a Random Individual can be attributed

to the availability of additional generic training data. The degree by which performance

increases further when training the model on the Specific Individual compared to training

on a Random Individual indicates learning of user-specificities.

Recognition performance as f-measure with varying weight wg for mixing the generic

with the individual model is plotted in Figure 7.9(left). Combining the generic model

with the specific individual model improved performance by 0.017 to 0.714 with a peak

at wg = 0.7, whereas the combination with a model trained on a random individual did

not increase recognition performance. This experiment confirms that the model learns

idiosyncrasies of the test subject. Note that this improvement is based on user-adaptation

using a single training sequence and is expected to increase with additional user-specific

data.

When training data are scarce, e.g., only a single training sequence is available, it seems

particularly valuable for this data to be obtained from the target user. When wg = 0

in Figure 7.9(left), which represents training a single classifier from a single training

sequence, we observe 0.125 absolute and 0.335 relative performance increase switching

from training on a random subject to training on the target user. This hypothesis was
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verified by training a classifier from data of a varied number of random subjects prior to

user-adaptation. The generic classifier was combined with an individual-specific classifier

using a fixed weight wg = 0.7, whereby the ratio of training sequences from random

subjects to training sequences from the target user was varied. Results in Figure 7.9(right)

show that the performance gain from user-adaptation reached its minimum when training

the generic classifier on data from three subjects, and that the improvement remained

approximately constant even after adding data from a further 17 subjects. This experiment

confirmed that high gains from user-adaptation can be expected when training data are only

available from a few subjects. Surprisingly, the maintained performance gain indicates

that user-adaptation is beneficial even if generic data are gathered from a large number of

subjects.

7.4.2 Adaptation by Joint SVM Training

User adaptation by training a single SVM on data from randomly selected subjects and

on the target user was evaluated by varying the number of user-specific training samples.

Results in Figure 7.10(a) show that the performance initially dropped but then continuously

rose with added user-specific data to 0.716. The initial drop is due to the employed

method for estimating class-dependent cost parameters Cc. In the presence of imbalanced

data, which only occurred when user-specific data were added to the training set, the

cost parameters only provide valid relative weights between classes. The absolute cost

of misclassification for a given binary optimization problem can however be greater or

smaller than with a stratified sample. The highest performance gain (0.020) was observed

when 5000 user-specific training samples were added to the generic training data. While

absolute performance after user-adaptation by jointly training a single SVM was higher

compared to combining classifiers, retraining with generic data considerably increased the

training time.
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(a) Joint SVM (b) Weighted kNN

Figure 7.10: Recognition performance of user adaptation via joint classifier training (a)
SVM with varied number of training samples from the target user, and (b) weighted
K-Nearest-Neighbor with varied probability mass ms of user-specific samples.

7.4.3 Adaptation with Weighted K-Nearest-Neighbour

For weighted K-nearest-neighbour classification, 5000 user-specific samples were added

to the generic training data and the number of samples in the local neighbourhood of a

test sample was set to K = 64 (which had shown good recognition performance in cross-

validation on the training data). Evaluation results with varied relative probability mass for

user-specific training samples are shown in Figure 7.10(b). Recall that ms and mg denote

the probability mass of user-specific and generic training datapoints, respectively (see

Section 5.3.2, p. 72). Although the highest observed performance increase (0.020) after

adding user-specific data with ms = 0.11 ·mg was comparable to SVM joint training, the

absolute recognition performance of 0.63 was not competitive. As there was considerable

overlap between temporal windows sampled from user-specific data, the i.i.d. assumption

was strongly violated. This explains why the optimal probability mass ms was below mg.

7.4.4 Variation across Individuals and Activities

The previous experiments showed that the proposed methods for user-adaptation are well

suited to capturing idiosyncrasies. The benefit of adapting a recognition model to a

particular subject intuitively depends on the difference of their task-execution style from
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Figure 7.11: Variation in gain from user-adaptation across individuals

Figure 7.12: Performance gains for each activity.

the norm, and on their consistency. The recognition performance after user-adaptation

is expected to increase if the execution style is particular to the user, and to decrease

after training on one sequence if the target user is inconsistent. Figure 7.11 illustrates

the variation in performance gained after user-adaptation across individuals. It provides

evidence that could support the intuition, showing that user-adaptation is beneficial for

most users, particularly beneficial for some, and has adverse effects for others.

Similarly, the performance gain from user-adaptation varies across activities. Some

activities may be performed in many different ways potentially involving different utensils.

Additionally, as the amount of available user-specific data may vary across activities,

higher gains are expected for activities for which more user-specific data are available.

Figure 7.12 shows performance gain per activity obtained with the proposed methods.

Particularly high gains were observed for activities that can be executed with a wide range

of strategies. Placing ingredients into the bowl, for example, can be performed by grasping
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the cut ingredients by hand and placing them into the bowl, picking up the chopping board

and scraping the ingredients into the bowl by hand, or scraping the ingredients off the

chopping board using a knife. In contrast, the gain from user-adaptation for cutting into

pieces was below average, indicating only minor variation in strategy across users; more

than 40% of the time during which data were acquired consisted of this activity.

7.5 Summary and Discussion

This chapter reported evaluation results on accelerometer tracking, multi-modal activity

recognition, and user-adaptive classification. Through quantitative comparative evaluation,

it was shown that the proposed accelerometer tracking algorithm outperforms previously

proposed methods considerably. The observed performance increase was shown to be

primarily due to the proposed similarity measure.

Evaluating an online activity recognition problem using the 50 Salads dataset, it was

discovered that the visual features Absolute Tracklets performed considerably worse than

Accelerometer Statistics, which further motivate a multi-modal approach, and help to justify

a sensor-rich environment for certain applications including recognition of manipulation

activities.

It may seem surprising that the simplest type of feature considered here, Object Use,

compared favourably with Absolute Tracklets which have shown competitive performance

on several standard activity recognition datasets. This result indicates that, in this experi-

mental scenario at least, the identity of objects involved in an activity is more discriminative

than a generic description of motion in the scene. The relative importance of the identity

of objects involved in an activity and motion descriptors matches our intuition, considering

that differences in visually observable motion across food preparation activities are very

subtle, and knowledge about the involvement of specialized tools in an activity can strongly

reduce the number of possibly occurring activities. Furthermore, the considerable margin

between the results using Accelerometer Statistics and Object Use indicates that object
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involvement and motion characteristics are strongly complementary. Scaling a recognition

system beyond a single recipe, however, would drastically increase the number of possible

activities involving any single object, rendering Object Use features less informative.

From a traditional computer vision perspective these results might suggest to use a

method in which objects involved in activities of interest are detected and tracked over

time, and activities are recognized by reasoning about these object’s (relative) position and

motion. As argued in Chapter 4, such an approach is problematic for reasons of scalability

with the number of objects and reliability. Learning detectors for all objects involved in

food preparation activities requires substantial amounts of additional labeled training data

for each object class, which is costly to obtain in practice. As large portions of kitchen

objects are usually occluded when in use, tracks obtained by visual object detection are

expected to be highly unreliable and are therefore of limited value for motion analysis. It is

arguably easier to attach accelerometers to additional objects than to train a large number

of object detectors that deal well with occlusion. In order to scale the recognition system

to a larger number activity classes, it would be useful to incorporate additional visual

features and relational histograms that use these as base features. For more fine grained

activity recognition where different manipulated ingredients are to be distinguished, local

appearance features that encode shape, texture and colour are expected to be particularly

beneficial. Encoding visual appearance in spatial proximity to tracked objects through

relational histograms promises to facilitate reasoning about utensil-ingredient interactions.

Although the proposed feature representation RETLETS did not outperform Accelero-

meter Statistics individually, features from accelerometer localization and RETLETS in

particular seem to capture key information for discovering cross-modal dependencies:

while traditional modality fusion methods such as feature vector concatenation and classi-

fier combination showed comparable recognition performance to Accelerometer Statistics,

the combination of Accelerometer Statistics with RETLETS and Reference Tracklet Statist-

ics showed a small but noticeable performance increase. All methods for user-adaptive

classification increased recognition performance compared to their generic counterparts,
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and it was demonstrated that user-specific training data helps even in the presence of a

large amount of generic data. The randomized control trial using classifier combination for

user-adaptation showed that the model indeed learned user-specific activity characteristics.

Results on variation of performance gain via user-adaptation suggest that expected gains

depend strongly on the variety of execution styles with which an activity can be performed,

the deviation of the target user’s style from the norm, and the user’s consistency in activity

execution.
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Chapter 8
Conclusions and Recommendations
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8.1 Summary of Contributions

This thesis proposed a novel approach for multi-modal recognition of manipulation activit-

ies that combines information from video and accelerometer data through accelerometer

tracking and relative motion descriptors.

A method for localizing an accelerometer in the field of view of a stationary camera was

introduced and extended to enable long term tracking across multiple episodes in which

accelerometer-equipped objects are used. The proposed method is easy to implement, fast

to compute, and strongly outperforms previous methods. Quantitative evaluation confirmed

superior performance of trajectories from dense optical flow compared to sparse feature

point tracking. A first attempt at extending point feature trajectories to 3D was presented.

However, evaluation suggests that a more effective way of combining color and depth

information is necessary in this regard. Finally, comparison of the proposed similarity

measure (TDT) with NCC convincingly showed TDT’s superior performance. With the

progress towards accurate accelerometer tracking made in this thesis, using embedded

accelerometers becomes a reasonably robust approach to visually tracking arbitrary objects

of sufficient size without relying on their visual appearance.

For multi-modal recognition of manipulation activities it was shown that relative motion

descriptors provide a key link between features from different sensor types. Features en-

coding Object Use showed considerable discriminative power, highlighting the importance

of identifying the objects involved in manipulation activities. Similar information might

have been obtained using RFID tags as an alternative to accelerometers. However, with

a recognition accuracy below 50% it is clearly insufficient to solely rely on this type of

feature. Motion features extracted from accelerometer data provided the strongest cues

among individual feature types investigated. Comparative evaluation of motion features

from accelerometers and video highlighted the large performance gap between visual

and accelerometer-based motion features. This result should motivate future research on

motion descriptors extracted from video. By encoding dense tracklets relative to the visual

trajectories of accelerometer-equipped objects as RETLETS a considerably better activity
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recognition performance was obtained compared to their absolute representation. The

combination of this novel feature representation with features extracted from accelerometer

data and video showed a higher recognition performance compared to combining only

features extracted from each modality independently, which is the traditional approach to

sensor fusion for activity recognition. These results justify a multi-modal approach and

indicate the importance of developing methods for effective modality fusion, of which one

example was presented in this thesis. Note that the choice of activities used for evaluation

here was deliberately made to exclude important factors such as the manipulated ingredi-

ents. If the task was set out to differentiate between different ingredients being cut into

pieces or placed into the bowl, additional (visual) features would be necessary to robustly

recognize such activities. It is expected that the integration of visual information will be

even more beneficial for reasoning about interactions between multiple entities such as

moving the chopped tomato from the chopping board into the bowl.

Specifically addressing scenarios in which a recognition system is primarily used by

a single person (e.g., cognitive situational support), this thesis investigated methods for

adapting activity models to a target user based on user-specific training data. Three

methods for user-adaptive classification were presented: combining classifiers that were

trained separately on generic and user-specific data, jointly training a single SVM from

generic and user-specific data, and a weighted K-nearest-neighbour formulation with

different probability mass assigned to generic and user-specific samples. The experiments

confirmed that adapting an activity recognition system to a target user can considerably

increase recognition accuracy. Via randomized control trials it was further shown that

this performance increase is indeed attributable to user idiosyncrasies as opposed to being

a mere consequence of additional data available for training. Variation in performance

increase after user adaptation across individuals indicates that users with execution style

that deviates from the norm benefit most from adaptation. Similarly, user-adaptation

is particularly advantageous for tasks that may be accomplished with a wide range of

execution strategies, such as many tasks involved in food preparation. Which of the
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presented methods for user-adaptation to apply in a particular scenario depends on the

specific constraints on storage space and computation time. If there are no constraints on

storage space and time for classifier retraining, jointly training a single SVM from generic

and user-specific data is expected to achieve higher recognition performance than the other

presented methods. The weighted K-nearest-neighbour approach would be recommended

in the extreme case where only minimal computation time for initial classifier training

and user-adaptation is available. If both storage space and retraining time are limited

but not negligible, combining classification results from separately trained SVMs should

be chosen out of the three methods discussed in this paper. While it showed slightly

lower performance gain from user-adaptation than joint SVM training and weighted K-

nearest-neighbour classification, final recognition performance was comparable to the

best observed performance. This model provides a reasonable compromise that may be

particularly useful in practical applications.

All proposed methods were evaluated on two new challenging datasets of food pre-

paration activities that have been made publicly available. Both datasets feature a novel

combination of video and accelerometers attached to objects. The Accelerometer Localiza-

tion dataset is the first public dataset that enables quantitative evaluation of accelerometer

tracking algorithms. The 50 Salads dataset with its detailed activity annotations may

be used for - and hopefully stimulates - research in areas such as activity recognition,

activity spotting, sequence analysis, progress tracking, sensor fusion, transfer learning, and

user-adaptation.

Food preparation activities share many characteristics with other manipulation activities

in, .e.g., manufacturing, assembly, and repair tasks. For example, they involve complex in-

teractions of a large number of different objects, which makes an approach that exclusively

relies on embedded sensors impractical, and the exhibited motion can be subtle, which

makes it hard to distinguish activities visually. Therefore it is expected that the methods

proposed in this thesis, although only evaluated on food preparation activities, generalize

well to activity recognition in other contexts that share these characteristics.
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8.2 Recommendations

8.2.1 Accelerometer Localization and Tracking

The proposed method for accelerometer tracking has several limitations. It assumes that

the camera is stationary, which is reasonable if the camera is installed as part of the

environment, but makes the algorithm in its current form unusable with hand-held or

body-worn cameras. With a moving camera it is necessary to correct for camera motion

when estimating acceleration along point trajectories. This problem has been addressed

by Wang et al. [111] who propose to estimate a homography from consecutive video

frames and warp the later frame before extending point trajectories. If the camera device

also includes an accelerometer (e.g., Microsoft Kinect or Google Glass), it could be an

alternative solution to subtract device acceleration from acceleration estimated along point

trajectories prior to matching. As accelerometers measure proper acceleration relative to

free fall, the challenge here is to factor acceleration due to camera motion and acceleration

due to resisting gravity.

The localization algorithm also assumes that accelerometer-equipped objects do not

enter or leave the camera view, and that the distance of objects from the camera is roughly

known and does not change over time. A probabilistic formulation through, e.g., particle

filtering could potentially relax these assumptions. With hidden variables that indicate

presence/ absence and 3D location of an accelerometer-equipped object with respect

to the camera reference frame modeled as latent variables, and accelerometer data and

acceleration along point trajectories as observations, a set of particles could model the

maximum a posteriori distribution suggesting likely distances from the camera and how

likely the accelerometer is in the camera view. By drawing particles from a mixture of

proposal distributions that model prior knowledge about object presence/ absence, object

occlusions, object stationarity, and object motion when in use, all of these issues could

be addressed explicitly. Some stronger method for temporal filtering would also reduce

jumping artifacts in location estimates.
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Modelling and recovering accelerometer orientation could also enable stronger matching

criteria that use 3D acceleration as opposed to acceleration norms. If an accelerometer’s

orientation relative to the camera view could be recovered, its local coordinate system

could be rotated to align with the camera reference frame, and 3D acceleration estimates

along point trajectories could be directly matched to 3D acceleration captured by the

accelerometer. One way to recover accelerometer orientation is to integrate accelerometers

with other sensors such as gyroscopes and magnetometers. While there are currently issues

of battery consumption with gyroscopes and issues of magnetic interference of electric

appliences with magnetometers, these may be overcome in the future. Data from these

additional sensors would not only be helpful for pose recovery but could also be used in

similarity estimation, which may further increase localization performance.

While the proposed similarity measure has been shown to outperform normalized cross-

correlation, it leaves room for improvement in localization performance. One direction

for potential improvement is the exploration of similarity measures that are based on

temporal statistics of acceleration sequences as opposed to aggregates over point-wise

comparisons such as TDT and NCC. For example, mutual information and empirical

cumulative distribution functions estimated over temporal windows may prove to be

even more robust to synchronization errors and artifacts arising from the comparison of

instantaneous acceleration captured by accelerometers and mean acceleration estimated

between consecutive video frames.

Finally, it would be interesting to evaluate the proposed method in other application

scenarios.

8.2.2 Relational Histograms

The descriptive power of RETLETS as used in this thesis relies on accurate accelerometer

tracking. There are at least two ways in which this dependency can be weakened. First, by

enforcing a unique match between an accelerometer and one point trajectory large parts of

useful information provided by a similarity map are discarded. A method for encoding
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relative tracklets with respect to multiple reference tracklets for each accelerometer could

lead to a more robust descriptor. If for example trajectories in two (or more) distinct image

locations show strong and almost equal similarity to an accelerometer, relative tracklets

should be extracted relative to both of these trajectories In order to maintain a constant

feature vector length, histograms of relative tracklets with respect to multiple reference

tracklets per accelerometer could be aggregated. If, on the other hand, none of the point

trajectories show a strong similarity with an accelerometer after an extended period of time,

this could indicate that the accelerometer is outside the camera’s field of view. In that case

it would not be sensible to estimate relative tracklets with respect to any reference tracklet.

As the accelerometer is potentially far away from the locations of tracklets in the video,

the hypothetical weights on relative tracklets would be diminishingly small, which would

suggest a uniform histogram for that accelerometer. Second, object locations estimated

via accelerometer tracking could be used to bootstrap a visual object model similarly to

Wu et al. [118]. Accelerometer-equipped objects could then be tracked using information

captured by the accelerometer and the appearance model, which should give a more robust

estimate, or accelerometers could be removed from the objects once appearance models

have been learned. In the second scenario, accelerometers could replace the tedious manual

task of labeling object locations in video. Accelerometers could be attached to all objects

whose locations are to be annotated,and accelerometer data could be captured while a

video is being recorded. Object locations could then be automatically estimated for every

frame in the video using the accelerometer tracking algorithm proposed in this thesis.

The proposed feature representation can be used with reference tracklets obtained in any

way. These could, for example, be trajectories of visually tracked objects, or prominent

point trajectories. Future work could evaluate RETLETS with reference tracklets from

other sources such as visual object tracking.

This thesis only investigated a single example from the family of object-generic rela-

tional histograms. Descriptors that encode other information than motion relative to the

locations of tracked objects promise to capture additional valuable information for recog-
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nizing manipulation activities. For example, appearance features such as texture or colour

could be spatially weighted depending on their distance to reference locations in order to

characterize what is in spatial proximity to objects. Giving a higher weight to appearance

features in spatial proximity to the objects would provide some focus of attention, which

could be useful to infer the objects accelerometer-equipped objects interact with. If, for

example, there is a reddish object with a tomato-like texture close to the estimated location

of a knife, such a descriptor could help inferring that the knife is indeed cutting a tomato.

The length of the feature vector of object-generic relational histograms grows linearly

with the number of tracked reference objects. This could be a major limitation if there is a

large number of tracked objects, or if the size of the relational codebook is large. In these

cases some feature selection through, e.g., frequent or discriminative item-set mining could

be useful to identify sets of relational codewords that are - for each individual reference

object - particularly frequent or discriminative [22, 53].

8.2.3 User-Adaptive Classification

The methods for user-adaptive classification presented in this thesis adapt to a target user

offline in one shot, assuming that adaptation is complete once the available set of labeled

user-specific data has been processed. However, their adaptation to user-specific data

becoming available successively (online) is trivial: new user-specific samples could be

included in the weighted k-nearest-neighbour classifier as they become available, and the

user-specific classifier for classifier combination, and the joint SVM could be retrained

periodically. The main challenge is finding good values for the free model parameters. In

this thesis, good values have been found through extensive cross-validation. While this

approach is also possible with repeated online training of a user-adaptive classifier, line- or

grid-search with cross-validation is resource intensive and does not exploit an expected

gradual change in parameter values. Recently, Bayesian methods have shown promising

results for optimizing hyper-parameters in machine learning by modeling classification

accuracy obtained with different hyper-parameters as samples from a Gaussian process
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[94]. This approach could be adapted to support gradually changing numbers of training

samples, which would help finding good parameters for a new ratio of generic to user-

specific training data.

Acquiring labeled training data from the target user is very costly and might in some

scenarios be practically infeasible. Recent research on unsupervised user-adaptation in

one shot [114] and gradual adaptation over time [27] could be equally well applied in the

context of manipulation activities. In conjunction with gradual adaptation over time, one

interesting direction of future research is the assessment of a user’s behavioral change in

order to infer degradation of cognitive capabilities (e.g., in situational support systems

[40]) or improvement of some skill (e.g., for training applications [35]).

8.2.4 Recognition of Manipulation Activities

The methods for multi-modal activity recognition presented in this thesis only include

features that encode motion information. As mentioned in the Introduction, evaluating

appearance models on the 50 Salads dataset is expected to be strongly biased as these

would model the relatively stable appearance of a person’s clothing and the appearance of

particular object instances (e.g., the blue bowl or the green olive oil bottle). Evaluation

results would give an overly optimistic estimate of generalization performance. On a

dataset that includes a wider variety of objects one should, however, investigate other types

of features such as colour and texture, and relational histograms using these features. These

are expected to further improve recognition performance, and might enable recognition

of the manipulated object (i.e., the ingredient). Yang et al. [120] recently argued that the

consequence of a manipulation activity, i.e. the state into which a manipulated object is

being transformed, is a robust cue for recognition. If this target state could be detected

reliably, it would certainly provide important complementary information that could be

easily combined with the methods proposed in this thesis.

As this thesis builds on research in two rapidly evolving research areas, computer vision

and ubiquitous computing, the base features used for evaluation (Dense Tracklets and
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Accelerometer Statistics) are not any more the state-of-the-art for visual and accelerometer-

based activity recognition by the time of writing. Note, however, that the methods presented

here can be easily combined with additional visual features, e.g. HoG, HoF and MBH, and

Accelerometer Statistics can be replaced by other accelerometer-based features such as

[77] without invalidating the arguments and findings presented in this thesis. Although

recognition performance achieved with stronger accelerometer-based and visual features

may be higher, modelling cross-modal dependencies through accelerometer localization

and relational histograms is nevertheless expected to improve recognition performance

compared to using either of these sensor types individually and compared to traditional

sensor fusion techniques.

The 50 Salads dataset has richer annotation than used here. Specifically, activities were

split into preparation, core and post-phases, and these phases were annotated as temporal

intervals. Each activity annotation also includes the ingredient acted upon (e.g., cut

tomato into pieces). These detailed annotations may be used in future work to investigate

the main sources of confusion errors between activities and for evaluating methods that

simultaneously reason about motion and objects acted upon.

For future work, evaluating the proposed method in different scenarios such as assembly

tasks, repair tasks, sports (e.g., climbing), surgical applications (e.g., suturing), and social

interactions would be desirable to further support the effectiveness of our method. All of

these scenarios could benefit from multi-modal activity recognition using accelerometer

localization. Currently, there is a strong unmet need for multi-modal activity recognition

datasets. This is partly due to the substantial effort necessary for careful planning, data

acquisition and annotation. Due to the novelty of the proposed sensor setup, specifically

embedding accelerometers into key objects involved in manipulation activities as opposed

to placing them on a person’s body, most of the publicly available datasets are unsuitable for

evaluating the proposed method for multi-modal activity recognition. As the accelerometer

tracking algorithm in its current form requires the camera intrinsic parameters to be known,

and the distance of accelerometers from the camera to be fixed and known, the only other
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dataset that includes accelerometers attached to objects, the Opportunity dataset [82], is

also not usable.

While this thesis has shown that manipulation activities can be recognized more robustly

with a multi-modal approach using accelerometer localization, relational histograms, and

user-adaptive classification, the proposed methods did not exploit the temporal structure

in which activities occur. Although food preparation activities involved in preparing a

recipe do not have to follow a unique order, one can usually define a temporal partial

ordering over activities. For example, ingredients are only mixed after all ingredients have

been cut into pieces and placed into a bowl, and the final salad is only served onto a plate

after all other steps of the recipe have been completed. Exploiting this structure could not

only improve recognition performance further but may also be used to detect a person’s

deviation from a valid order of steps, which could be a trigger for issuing a guiding prompt

back to a user. Preliminary evaluation (not reported in this thesis) suggests that simple

temporal models such as Hidden Markov Models (HMMs) applied to the recognition

activity scores obtained by classifying subsequent temporal windows are not powerful

enough to model the complex temporal structure of food preparation activities. Research

by Iscen and Duygulu [44] suggests that modelling transitions between pre-segmented

temporal blocks of activities would be more promising. Recipe structures commonly have

a checklist-type structure in which activities that have been performed in the past will

not occur again, which could be exploited to effectively prune the search space for future

activities.
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On the use of brain decoded signals for online user adaptive gesture recognition

systems. In Proceedings of the International Conference on Pervasive Computing,

pages 427–444, Helsinki, Finland, May 2010.
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