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ABSTRACT

Recognizing complex activities is a challenging research prob-
lem, particularly in the presence of strong variability in the
way activities are performed. Food preparation activities are
prime examples, involving many different utensils and ingre-
dients as well as high inter-person variability. Recognition
models need to adapt to users in order to robustly account
for differences between them. This paper presents three
methods for user-adaptation: combining classifiers that were
trained separately on generic and user-specific data, jointly
training a single support vector machine from generic and
user-specific data, and a weighted K-nearest-neighbor for-
mulation with different probability mass assigned to generic
and user-specific samples. The methods are evaluated on
video and accelerometer data of people preparing mixed sal-
ads. A combination of generic and user-specific models con-
siderably increased activity recognition accuracy and was
shown to be particularly promising when data from only a
limited number of training subjects was available.
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Categories and Subject Descriptors

1.5.5 [Pattern Recognition|: Applications; 1.4.8 [Scene
Analysis|: Sensor Fusion; 1.2.10 [Vision and Scene Un-
derstanding]: Video Analysis; K.4.2 [Social Issues]: As-
sistive Technologies for Persons With Disabilities

General Terms

Algorithms, Experimentation, Measurement, Performance.

1. INTRODUCTION

Recognizing complex activities is a challenging research
problem with a wide range of potential application areas
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including situational support, skill assessment, surveillance,
content-based video retrieval and video summarization. Food
preparation activities are particularly challenging to recog-
nize as they involve complex interactions of a large number
of entities and have a high intra-class variability. While vast
amounts of training data may enable modelling such com-
plex phenomena, training data are very limited in practice
due to the considerable manual effort necessary to record
and annotate such data. Therefore, it is important to in-
vestigate other approaches to increasing activity recognition
accuracy. As food preparation activities are subject to large
inter-person variability, we investigate how the adaptation
of a recognition system to a particular user may increase
recognition robustness in this context.

A particularly promising application for activity recogni-
tion with a strong potential for social impact is cognitive
situational support. For example, an envisaged support sys-
tem might guide people with dementia through activities of
daily living and thereby enable them to live more indepen-
dently of carers. As such a system would be deployed in a
person’s home and continuously gather data from the same
person, adaptation to the user’s idiosyncrasies is desirable.

In this paper we compare three methods for adapting
generic, stereotypical activity models to specific individu-
als whose data were not included in the data used to train
the generic models. Firstly, a user-adaptive discriminative
recognition model is presented in which a generic and a user-
specific classifier are trained independently and merged at
test time by combining class posterior probabilities (see Fig-
ure la). This method does not require all generic training
data to be available at the time the model is adapted to a
particular subject, which is desirable for practical reasons
of system deployment. Secondly, we investigate training a
single support vector machine (SVM) jointly on generic and
user-specific data (see Figure 1b). This approach requires
the whole model to be retrained every time new user-specific
data become available. Thirdly, we propose a K-nearest-
neighbor classifier in which different probability mass is as-
signed to user-specific and generic training samples. While
K-nearest-neighbor classification allows user-specific data to
be added at any time with no cost for retraining, maintaining
the entire set of generic data may be practically infeasible.

2. RELATED WORK

There is a large body of work on activity recognition in
the computer vision and ubiquitous computing communi-
ties. For an overview we refer the reader to recent reviews
by Aggarwal and Ryoo [1] and Figo et al. [4]. State-of-
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Figure 1: User-adaptive recognition. (a) Classifier combination in which the classification results of generic and user-specific
discriminative classifiers are combined at test time. (b) A single classifier is trained on both generic and user-specific data.

the-art approaches to visual activity recognition use bags-
of-words over local features such as spatio-temporal interest
points [5], point trajectories, and HoG, HoF or MBH de-
scriptors [13]. For recognizing food preparation activities
based on accelerometers, Pham et al. [8] proposed statisti-
cal features extracted from the temporal domain. Recently,
Plotz et al. [9] introduced a method for learning features
from accelerometer data. As accelerometers and video data
provide complementary information we follow a multi-modal
approach to activity recognition, using both accelerometers
attached to kitchen objects and an RGBD-video camera [11].
In contrast to body-worn accelerometers [3], accelerometers
attached to objects identify the object being moved and can
be used for visually localizing and tracking objects without
relying on their visual appearance [10].

User-adaptation of recognition systems has been studied
in a wide range of application areas including hand-written
text recognition [7], speech recognition [12] and recognition
of activities from accelerometer data [2]. Nosary et al. [7]
proposed an unsupervised method for online-adaptation of a
handwritten text-recognition system exploiting lexical con-
text. Tang et al. [12] represent speaker idiosyncrasies by
a vector in a low-dimensional space representing variation
across speakers, which is adapted using maximum-likelihood
estimation on user-specific data. Bao et al. [2] compared
classifiers for activity recognition trained exclusively on data
from the target user to classifiers trained on data from other
users. In this paper we investigate three methods for com-
bining generic and user-specific data from multiple sensor
modalities in the context of recognizing food-preparation ac-
tivities.

3. FEATURES

Accelerometers attached to objects provide information
about which objects are being moved and capture transla-
tional acceleration describing how these objects move rela-
tive to a local frame of reference. Video data obtained from
a stationary camera allow features to be extracted that rep-
resent motion relative to a global reference frame and spa-
tial relationships of multiple moving objects. As these cues
complement each other, we investigate a multi-modal ap-
proach to activity recognition using these types of sensors
(see Fig. 2). While creating a sensor-rich environment in
some cases might seem impractical, the benefit of highly
accurate activity recognition systems outweighs the cost of
creating a sensor-rich environment in many specialized ap-
plications such as cognitive situational support, rehabilita-
tion, skill assessment, and automatic supervision of assembly
tasks.

Figure 2: Illustration of the 50 Salads dataset: RGB-D video
data was captured by a camera with top-down view onto the
work-surface. Wireless accelerometers were embedded into
the handles of kitchen utensils and attached to other kitchen
objects. At the time the image above was captured only one
out of seven accelerometers was moving.

Typically, features are extracted from accelerometers and
video in isolation. In this paper we additionally combine
information obtained from accelerometers and video data
via accelerometer localization [10] as proposed in [11]. The
following subsections briefly describe the types of features
we extract from accelerometer and video data. For details
we refer the reader to the original publication [11]. The way
in which these features are combined for activity recognition
depends on the classifier and will be described in Section 4.

3.1 Acceleration Statistics

From each accelerometer we extract statistical features
from temporal windows of 256 samples and estimate its ori-
entation. In the temporal domain, the mean, standard de-
viation, energy and entropy are extracted from acceleration
data along each of the three axes separately. Pitch and roll
are estimated from four temporal subwindows of 32 samples
evenly spaced within a temporal window.

3.2 Accelerometer Localization

In order to establish correspondences between accelerom-
eter and video data we localize accelerometers in the cam-
era’s field of view [10]. Each accelerometer is localized by



matching acceleration data from the device to acceleration
estimated along visual point trajectories. Point trajectories
are initialized on a regular grid in the image and their lo-
cations are updated in every frame based on displacement
vectors in a dense optical flow field. The similarity between
acceleration measured by a device Agey : (afiZL, .. .,af;gv)
and acceleration estimated along a point trajectory Ay;s :
(afgl, . ,aiti)s) is computed incrementally with a temporal

decay a:
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The location of an accelerometer is estimated as the loca-
tion of the most similar point trajectory in the last frame.
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3.3 Visual Displacement Statistics

The localization algorithm can be used to extract an ac-
celerometer’s motion relative to the camera reference frame.
From fixed length sequences of visual displacements of each
accelerometer we extract the mean, standard deviation, en-
ergy and entropy, similarly to Subsection 3.1. Fixed length
point trajectories (tracklets) are encoded as a histogram
over codebook tracklets following the standard bag-of-words
approach [13]. In addition to this histogram of absolute
tracklets we construct histograms of tracklets relative to ac-
celerometer trajectories, one for each accelerometer-equipped
object.

4. USER-ADAPTIVE RECOGNITION
4.1 Adaptation by Classifier Combination

One approach to adapting a generic classifier to a target
user involves training a separate classifier from user-specific
training data and then combining the classification results
obtained by the generic and user-specific classifiers. Based
on classifiers that estimate posterior probabilities of activity-
classes given observations, we can combine these distribu-
tions by taking their weighted sum,

P(€]0)comb = wgp(clo)g + (1 — wg)p(c|o)s, (2)

where wy € [0, 1] is the weight of the contribution the generic
classifier makes to the combined classification result, ¢ de-
notes the class and o the observed data. The activity class
with maximum p(c|0)coms is considered to be the recognized
activity.

We use support vector machines (SVMs) as base clas-
sifiers. Class posterior probabilities are estimated as pro-
posed by Wu et al. [14]. In order to combine feature types,
f:1,..., F, we estimate the mean of radial basis function
kernels,
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where v is a feature-specific scaling parameter. The dis-
tance function, Dy, is the Euclidean distance for Accelera-
tion Statistics and Visual Displacement Statistics, and the
x2-distance for Relative Tracklets. The scaling parameters,
~¢, for Acceleration Statistics and Visual Displacement Statis-
tics are estimated by cross-validation. For Relative Track-

lets, vy is set to %, where A is the mean distance between

training samples [15]. We use one-vs-one multi-class SVM
as provided by the LibSVM library’.

4.2 Adaptation by Joint Classifier Training

Adapting a recognition system to a target user by combin-
ing generic and user-specific classifiers does not require the
full set of generic training data to be available at the time the
system is adapted to a target user. The late combination of
recognition results may, however, yield suboptimal recogni-
tion performance and jointly training a single classifier from
both generic and user-specific training data may prove to be
superior. In this section we introduce two models for joint
classifier training and show how the relative contribution of
generic and user-specific data may be modified.

4.2.1 Joint SVM Training

We investigate jointly training SVMs from generic and
user-specific training data. The contribution of the set of
generic training data and the set of user-specific training
data to the objective function can be controlled by the rel-
ative number of samples in these subsets. If the number of
user-specific samples is greater than the number of samples
from generic training data the relative cost of misclassifying
user-specific data is greater than the cost of misclassifying
generic data. If the number of training samples are equal,
generic training samples are taken from a large number of
different activity-sequences, and user-specific training data
is only available for, e.g., a single sequence, then the cost
of misclassifying samples from the user-specific sequence is
proportionally higher than the cost of misclassifying samples
from each sequence in the generic training data set.

4.2.2 Weighted K-Nearest-Neighbour

A simple yet effective [6] discriminative classification al-
gorithm is K-nearest-neighbour. This algorithm does not
involve any learning but needs all training data to be avail-
able at test time. The class-posterior distribution given an
observation is estimated by identifying the set of K train-
ing samples that are closest to the observation in feature
space given some distance metric. Let K. be the number of
samples xff) from class c in this set. The class posterior dis-
tribution is defined as the proportion of samples from class
c in the set, i.e.,

plelo) = 7£. (4)

This treats all training samples as being equally important.
A generalization of Eq. (4) assigns a different probability
mass to each training sample, i.e.,

) (%)
ng) €NN (o) m

p(clo) = 5 (5)

x(4)ENN (o) m@)’
where NN (o) is the set of K nearest neighbours of o. This
is equivalent to Eq. (4) if m¥ = 1/N for all training sam-
ples. The relative contributions of generic and user-specific
data to the estimated class-posterior probability can be ad-
justed using Eq. (5) by assigning probability mass mgy to all
generic samples and probability mass ms to all user-specific
samples. In the case where m; is greater than mg the class-
posterior probability p(c|o) is higher if there is a user-specific

'LibSVM: www.csie.ntu.edu.tw/ cjlin/libsvm/



training sample of class ¢ in the local neighborhood of the
observation.

For fusing different feature types we combine the distance
metrics defined over the individual feature spaces:

D(Xa X(i))comb = Z ’Vfo (va X<fi))v (6)
f

where v; and Dy are defined as described in Sec. 4.1.

5. EVALUATION

5.1 Dataset & Evaluation Protocol

The proposed methods are evaluated on the 50 Salads
dataset [11]. The dataset contains RGBD-video data and
data from accelerometers attached to kitchen objects ac-
quired while 25 people prepared two mixed salads each (see
Fig. 2). The subjects cover a wide range of age, gender, eth-
nicity and food-preparation experience. Preparing the salad
involved mixing a dressing, cutting ingredients into pieces,
mixing the ingredients, serving the salad onto a plate and
adding the dressing to the salad. The order in which steps
in the recipe were executed was randomly sampled from a
statistical recipe model. Accelerometers were attached to
a knife, a peeler, a large spoon, a small spoon, a dressing
glass, a pepper dispenser and an oil bottle.

The recognition task was to classify temporal sliding win-
dows into one out of |C| = 10 activity classes: give pep-
per, add oil, mix dressing, peel cucumber, cut ingredient,
place ingredient into bowl, mix ingredients, serve salad, and
NULL, where NULL indicates that none of the other activ-
ities currently occurs. The dataset was split into 5 cross-
validation partitions containing two sequences of each of 20
subjects for training and two sequences of each of 5 subjects
for testing. No subject was part of both training and test
set in any partition. For generic classifier training a strati-
fied sample of Ny, = 5000 data-points was used. In order to
evaluate user-adaptation, models were additionally trained
on samples from one user-specific sequence for each subject
in the test-set. Two models were trained per subject us-
ing one sequence for training and the other one for testing,
and vice versa. As some activities only last a few frames
and some might not occur at all in any particular sequence,
the user-specific training data was highly imbalanced. An
approximately-stratified sample was taken from the user-
specific training sequence, including all samples from activi-
ties for which not more than N,/|C| samples were available,
and a stratified sample from all other classes. For SVM
training the regularization parameter was set differently for
each class based on the number of samples from that class
in the training set: C. = |CJT77X7@ The scaling parameters,
~v¢, were determined by 5-fold cross-validation and set to
vas = 0.03125 for Acceleration Statistics and yvps = 2
for Visual Displacement Statistics in all experiments. Ac-
tivity recognition performance was evaluated using average
precision and average recall over activity classes, and their
harmonic mean (f-measure).

5.2 Empirical Results
5.2.1 Adaptation by Classifier Combination

Adding more training data to a learning algorithm may
improve recognition accuracy regardless of whether these ad-
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Figure 3: Recognition performance of user adaptation via
classifier combination with (a) varied mixing weight wy, and
(b) varied number of generic training subjects using wy =
0.7.

ditional training data are from the user the system is eval-
uated on or not. To investigate whether our models actu-
ally learn user-specificities we performed a randomized con-
trol trial, in which the adaptive model trained on the same
subject was compared with an adaptive model trained on
a randomly selected other subject from the test set. We
refer to these cases as Specific Individual and Random Indi-
vidual, respectively. Recognition performance as f-measure
with varying weight w, for mixing the generic with the indi-
vidual model is plotted in Figure 3a. Combining the generic
model with the specific individual model improved perfor-
mance by 0.017 to 0.714 with a peak at wy = 0.7, whereas
the combination with a model trained on a random individ-
ual did not increase recognition performance. Note that this
improvement is based on a single sequence and is expected
to increase with additional user-specific data.

When training data are scarce, e.g., only a single training
sequence is available, it seems particularly valuable for this
data to be obtained from the target user. When wy = 0 in
Figure 3a, which represents training a single classifier from
a single training sequence, we observe 0.125 absolute and
0.335 relative performance increase switching from training
on a random subject to training on the target user. We
verified this hypothesis by training a classifier from data of
a varied number of random subjects. The generic classi-
fier was combined with an individual-specific classifier using
weight wy, = 0.7, whereby the ratio of training sequences
from random subjects to training sequences from the target
user was varied. Results in Figure 3b show that the perfor-
mance gain from user-adaptation reached its minimum when
training the generic classifier on data from three subjects,
and that the improvement remained approximately constant
even after adding data from a further 17 subjects. This ex-
periment confirmed that high gains from user-adaptation
can be expected when training data are only available from
a few subjects. Furthermore, the maintained performance
gain indicates that user-adaptation is beneficial even if data
are gathered from a large number of subjects.

5.2.2 Adaptation by Jointly Training SVM

User adaptation by training a single SVM on data from
randomly selected subjects and on the target user was evalu-
ated by varying the number of user-specific training samples.
Results in Figure 4a show that the performance initially
dropped but then continuously rose with added user-specific
data to 0.716. The initial drop is due to our method for es-
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timating class-dependent regularization parameters C.. In
the presence of imbalanced data, which only occurred when
user-specific data were added to the training set, the reg-
ularization parameters only provide valid relative weights
between classes. The absolute regularization for a given bi-
nary optimization problem can however be greater or smaller
than with a stratified sample. The highest performance gain
(0.020) was observed when 5000 user-specific training sam-
ples were added to the generic training data. While absolute
performance after user-adaptation by jointly training a sin-
gle SVM was higher compared to combining classifiers, re-
training with generic data considerably increased the train-
ing time.

5.2.3 Adaptation with Weighted K-Nearest-Neighbour

For weighted K-nearest-neighbour classification we added
5000 user-specific samples to the generic training data and
the number of samples in the local neighbourhood of a test
sample was set to K = 64 which showed good recognition
performance in preliminary evaluation. Evaluation results
with varied relative probability mass for user-specific train-
ing samples are shown in Figure 4b. Although the high-
est observed performance increase (0.020) after adding user-
specific data with ms = 0.11 - my was comparable to SVM
joint training, the absolute recognition performance of 0.63
was not competitive. As there was considerable overlap be-
tween temporal windows sampled from user-specific data,
the i.i.d. assumption was strongly violated. This explains
why the optimal probability mass m, was below m.

5.2.4 Variation across Individuals and Activities

The previous experiments showed that the proposed meth-
ods for user-adaptation are well suited to capturing idiosyn-
crasies. The benefit of adapting a recognition model to a
particular subject intuitively depends on the difference of
their task-execution style from the norm, and on their con-
sistency. We expect the recognition performance after user-
adaptation to increase if the execution style is particular to
the user, and to decrease after training on one sequence if the
target user is inconsistent. Figure 5 illustrates the variation
in performance gained after user-adaptation across individ-
uals. It provides evidence confirming the intuition, showing
that user-adaptation is beneficial for most users, particularly
beneficial for some, and has adverse effects for others.

Similarly, the performance gain from user-adaptation varies
across activities. Some activities may be performed in many
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Figure 6: Performance gains for each activity.

different ways potentially involving different utensils. Addi-
tionally, as the amount of available user-specific data may
vary across activities, higher gains are expected for activi-
ties for which more user-specific data are available. Figure 6
shows performance gain per activity obtained with the pro-
posed methods. Particularly high gains were observed for
activities that can be executed with a wide range of strate-
gies. Placing ingredients into the bowl, for example, can be
performed by grasping the cut ingredients by hand and plac-
ing them into the bowl, picking up the chopping board and
scraping the ingredients into the bowl by hand, or scraping
the ingredients off the chopping board using a knife. In con-
trast, the gain from user-adaptation for cutting into pieces
was below average, indicating only minor variation in strat-
egy across users; more than 40% of the time during which
data were acquired consisted of this activity.

6. DISCUSSION & FUTURE WORK

In this paper we presented three methods for user-adaptive
activity recognition: combining classifiers that were trained
separately on generic and user-specific data, jointly train-
ing a single SVM from generic and user-specific data, and
a weighted K-nearest-neighbor formulation with different
probability mass assigned to generic and user-specific sam-
ples. These methods were evaluated on a multi-modal ac-
tivity recognition dataset of food preparation activities.

The experiments confirmed that adapting an activity recog-
nition system to a target user can considerably increase
recognition accuracy. Via randomized control trials we have
further shown that this performance increase is indeed at-
tributable to user idiosyncrasies as opposed to being a mere
consequence of additional data available for training. Vari-
ation in performance increase after user adaptation across
individuals indicates that users with execution style that
deviates from the norm benefit most from adaptation. Sim-
ilarly, user-adaptation is particularly advantageous for tasks
that may be accomplished with a wide range of execution
strategies, such as many tasks involved in food preparation.

Which of the presented methods for user-adaptation to
apply in a particular scenario depends on the specific con-
straints on storage space and computation time. If there
are no constraints on storage space and time for classifier
retraining, jointly training a single SVM from generic and
user-specific data is expected to achieve higher recognition
performance than the other presented methods. The weighted
K-nearest-neighbor approach would be recommended in the
extreme case where only minimal computation time for ini-
tial classifier training and user-adaptation is available. If
both storage space and retraining time are limited but not
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negligible, combining classification results from separately
trained SVMs should be chosen out of the three methods
discussed in this paper. While it showed slightly lower per-
formance gain from user-adaptation than joint SVM train-
ing and weighted K-nearest-neighbor classification, absolute
recognition performance was comparable to the best ob-
served performance. This model provides a reasonable com-
promise that may be particularly useful in practical appli-
cations.

Future work includes evaluation of the presented models
with more than a single training sequence of user-specific
data, and in the context of recognizing activities involved in
multiple recipes. Further directions for improved recogni-
tion of food preparation tasks include temporal models that
effectively exploit the recipe structure, and adding visual ap-
pearance features for differentiating between activities with
respect to the ingredients.
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