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Abstract—This paper addresses the problem of localizing an
accelerometer in the view of a stationary camera as a first
step towards multi-modal activity recognition. This problem
is challenging as accelerometers are visually occluded, they
measure proper acceleration including effects of gravity and their
orientation is unknown and changes over time relative to camera
viewpoint. Accelerometers are localized by matching acceleration
estimated along visual point trajectories to accelerometer data.
Trajectories are constructed from point feature tracking (KLT)
and by grid sampling from a dense flow field. We also construct
3D trajectories with visual depth information. The similarity
between accelerometer data and a trajectory is computed by
counting the number of frames in which the norms of accel-
erations in both sequences exceed a threshold. For quantitative
evaluation we collected a challenging dataset consisting of video
and accelerometer data of a person preparing a mixed salad with
accelerometer-equipped kitchen utensils. Trajectories from dense
optical flow yielded a higher localization accuracy compared to
point feature tracking.

Keywords-computer vision; inertial sensors; sensor fusion;
accelerometer detection; localization; tracking

I. INTRODUCTION

With accelerometers becoming increasingly ubiquitous
(through, e.g., smartphones and tablets) there is a growing
interest in fusing accelerometer data with visual data. Com-
bining these sensor types may have strong potential as they
provide complementary information. While accelerometers
capture subtleties in the movement of the device, computer
vision may, for example, put this information into spatial
context and into relation with other entities. In this paper we
consider the problem of localizing an accelerometer in the
visual field of a stationary camera in the context of situational
support systems.

In aging societies of many countries the ratio of people
needing personal care to those able to provide care steadily
increases. Therefore, the role of technology to develop new
assistive solutions gains in importance. While prototypes of
situational support systems are able to track and guide a
cognitively impaired person through some activities of daily
living (ADL) using embedded sensors, food preparation activ-
ities appear to be particularly challenging. We investigate the
localization of accelerometers embedded in kitchen utensils
in the visual field of a camera mounted to have a top-down

Fig. 1. Accelerometer Localization: Point features (colored dots) are tracked
within a region of interest (white rectangle). By measuring similarity of
accelerations along these trajectories with accelerometer data (black indicates
weakest and red indicates strongest similarity), the algorithm estimates the
accelerometer location (red circle). The red cross marks the ground-truth
location.

view onto a work surface (see Fig. 1). We propose to fuse
visual and accelerometer data by first estimating the locations
of accelerometers in the camera’s frame of reference. In our
setup accelerometers are visually occluded at all times. They
are embedded into kitchen utensils to unobtrusively capture
utensil movements. While for some utensils accelerometers are
embedded in their handles, for others the sensors are attached
in locations that are not necessarily close to a person’s hand
(e.g., on the rim of a bowl). In order to solve the localization
problem, acceleration data need to be extracted from camera
images and compared to data captured from accelerometers.
In this context, visual motion estimation may generally be
performed at the object level through object tracking or at the
point level through either dense optical flow [5] or by tracking
point features [23]. We investigate visual acceleration from
point feature trajectories and optical flow because these meth-
ods do not make strong assumptions about the appearance of



the utensils in which the accelerometers are embedded or about
the hands manipulating them. With combined 2D and depth
cameras becoming increasingly available at a reasonable price,
we use this type of sensor (Kinect) and present preliminary
results using trajectories that incorporate depth information.

There are four core problems associated with the task of
fusing vision and accelerometer data. (i) An accelerometer
measures proper acceleration (relative to free-fall), whereas
visual acceleration estimates represent coordinate acceleration
relative to a 3D coordinate system attached to the camera.
The gravity vector, which is necessary to convert coordinate
to proper acceleration, is unknown in the 3D coordinate system
attached to the camera. (ii) The orientation of an accelerometer
is unknown and changes over time relative to the (stationary)
camera viewpoint. With accelerometers that measure only
translational and not angular acceleration (such as the devices
used in this paper) it is infeasible to calibrate and subse-
quently track their relative orientation. (iii) Different sensor
frequencies of accelerometers and cameras impose another
problem as accelerometer frames and images are not acquired
at the same time, even if the streams are synchronized. (iv)
Although camera frames and accelerometer readings may be
timestamped, we may not generally assume that these clocks
are synchronized. Similarly, if timestamps are generated by a
server receiving new data from the client devices (cameras and
accelerometers), the timestamps are synchronized, but they do
not reflect latencies in data transmission.

This paper makes the following contributions. It proposes an
accelerometer localization pipeline that may be combined with
different techniques for constructing point feature trajectories
from visual data. Here, we investigate trajectories from sparse
optical flow (KLT) and trajectories sampled on a regular grid
from a dense flow field [5]. An incremental similarity measure
for matching visual trajectories with accelerometer data is used
that is easy to implement, fast to compute and outperforms
the state-of-the-art. We collected and labeled a realistic and
challenging dataset for quantitative evaluation of localization
accuracy. This dataset consists of video and accelerometer data
of a person preparing a mixed salad with three accelerometer-
equipped kitchen utensils and will be made public. We are the
first to present quantitative data on accuracy of accelerometer
localization in video. We compared KLT and dense optical
flow for trajectory construction, and two measures of similar-
ity between accelerometer data and acceleration along point
trajectories (i.e. normalized cross-correlation and the measure
proposed in this paper).

II. RELATED WORK

Inertial sensors have been used for several pervasive com-
puting applications including self-localization [7], [12], action
recognition [17], [18] and skill assessment [9]. Pham et al.
[18] recognized actions such as chopping, peeling, stirring and
scooping from accelerometers embedded into kitchen utensils
using dynamic time warping.

In the computer vision community point feature trajectories
have been used for action classification [15]. Wang et al. [25]

proposed in this context to construct trajectories from dense
optical flow, obtaining superior performance compared with
trajectories of salient features [20] tracked with KLT [13],
[23]. In this paper we compare the same methods for trajectory
construction in the context of accelerometer localization and
draw similar conclusions.

First prototypes of situational support systems for cogni-
tively impaired people using sensors such as accelerometers
and RFID [10] or cameras [11] are tailored to a single
ADL task at a time. Hoey et al. [11] used POMDPs [3]
to guide a person through the task of hand-washing with a
camera mounted above a sink. In [10] the authors proposed
a general specification method for prompting systems which
was demonstrated on the task of making a cup of tea [16].

The general problem of fusing visual data with accelerom-
eter data and some potential solutions are discussed in detail
by Corke et al. [4]. Inertial sensor localization in a camera’s
field of view is primarily being addressed in the context of
tracking people [14], [21], [22]. For example, Teixeira et
al. [22] used magnetometers and accelerometers in mobile
phones to identify and localize multiple people tracked from
CCTV cameras. Sensor measurements from phones carried
by the subjects were associated with tracked body positions
in a hidden Markov model for localization and to resolve
ambiguities in visual tracks. This approach makes strong
assumptions about the appearance of the object (person) that
is to be tracked. Shigeta et al. [21] make similar assumptions
localizing an accelerometer using normalized cross-correlation
(NCC) of accelerometer data with trajectories of a jacket and
a hand. Maki et al. [14] proposed point feature trajectories in
combination with NCC for accelerometer localization without
prior knowledge of object appearance. Unfortunately, those
authors did not present quantitative data on localization per-
formance.

III. LOCALIZATION ARCHITECTURE
A. Overview

The goal is to estimate the location of accelerometers in the
field of view of a camera. The data flow from the raw input
data to location estimates is illustrated in Fig. 2.

The visual data, i.e. the color frames and depth maps, are
temporally and geometrically aligned such that at each pixel,
RGB values and depth are available. In practice, there is a
small time delay between color and depth frames. With depth
from structured light the depth measurement for some pixels
is invalid. This is observable at depth discontinuities, at non-
opaque or reflective surfaces, and in areas that lie in the
shadow of the projected light pattern.

We extract point feature trajectories by tracking either
salient features [20] with pyramidal KLT [1] or points on a
regular grid with dense optical flow [5]. Both techniques are
described in Sec. III-B.

In order to match extracted video features with accelerome-
ter data, locations in image space need to be transformed into
world coordinates, which requires the camera to be calibrated.
Additionally, locations need to be differentiated twice to
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Fig. 2. Localization Architecture: Data flow from raw input streams generated
by accelerometers and the camera to location estimates for each accelerometer
in the current video frame.

accelerations. In order to transform coordinate acceleration to
proper acceleration, the gravity vector needs to be estimated
in the view of the camera and added to visual acceleration
estimates.

The resulting acceleration sequences are not directly com-
parable to the captured accelerometer data, as the frequencies
of the camera and the accelerometers are different. Therefore,
we interpolate the acceleration data from accelerometers to
match the intervals between subsequent video frames.

Once these processing steps are completed we are able to
estimate the similarity between visual acceleration sequences
and the accelerometer data. Here, we compute the similarities
exhaustively between all current visual acceleration sequences
and all accelerometers. Based on the resulting similarity map
between devices and tracklets, we estimate the location of each
accelerometer in the current video frame.

B. Feature Extraction

We consider two methods for trajectory construction: sam-
pling the image at salient (highly textured) locations [20],
which are tracked over time using sparse optical flow (pyrami-
dal KLT [1]), and sampling the image on a regular grid with
point locations updated over time using Farnebidck’s dense
optical flow algorithm [5]. While the first method extracts
trajectories at feature locations that are expected to be easily
tracked individually, the latter evenly samples the image space
and uses a spatially smooth flow field. Both methods are
explained in detail below.

1) Trajectories from feature point tracking: In this first
trajectory construction method trajectories are initialized at
keypoint locations, defined as image locations whose Hessian
matrix has two large eigenvalues [20]. The smaller eigenvalue
of the Hessian matrix is called cornerness. A fixed maximum
number of trajectories N is maintained. From the first frame
of a video we initialize a trajectory at the image location
with highest cornerness. We proceed by initializing trajectories

at locations in order of decreasing cornerness subject to the
following constraints. The total number of trajectories is not
greater than N, the Euclidean distance of a point to the
locations in the current frame of all trajectories is greater than
a threshold d, and the cornerness of the point is greater than
a fraction of the maximum cornerness value in the current
image. The distance threshold d prevents initialization of large
numbers of trajectories in a small area of the image.

For each subsequent frame, currently maintained point fea-
tures are attempted to be tracked using pyramidal KLT [1]. We
call the set of trajectories that are tracked successfully to the
current frame, or were newly initialized, active trajectories. If
after an update step there are less than N active trajectories, we
initialize new trajectories at keypoint locations (as described
above) with these new locations having a minimum Euclidean
distance d to all active trajectories.

We used the implementation for feature extraction as pro-
posed by Shi and Tomasi [20], and tracking as proposed by
Bouguet [1] provided by the OpenCV library [6].

2) Trajectory construction with grid-sampling and dense
optical flow: The second method we employ to construct
trajectories from video initializes trajectories at locations on
a regular grid with horizontal and vertical spacing d between
points. For each new frame we compute a dense flow field
as described by Farneback [5] and provided by OpenCV [6].
Point feature locations are then updated through shifting previ-
ous locations by the horizontal and vertical flow estimated for
their respective positions. In the case where a newly estimated
location lies outside the image region the corresponding point
trajectory is discarded.

New trajectories are initialized at grid point locations whose
minimum distance to current locations of active trajectories is
greater than d. To avoid situations in which large number of
trajectories gather in a small area, we employ a technique
to terminate trajectories, which is described in detail in Sec.
I-F.

3) Extension to 3D: When transforming image locations
into world coordinates we need to provide estimates of dis-
tance to the camera for points along trajectories (see Sec.
II-C). This distance has an impact on the magnitude of
estimated accelerations. In addition to trajectories with a fixed
depth, we explore an extension of point feature trajectories
into the third dimension through the use of combined 2D and
depth cameras. Specifically, we annotate the point locations in
trajectories with the measured depth at the point’s position.
Note that 3D trajectories could also be constructed from
scene flow [24]. Estimating dense 3D scene flow, however,
is computationally too expensive for online accelerometer
localization [8].

In practical scenarios the depth of some pixels in a frame
may become invalid. This happens for example frequently with
cameras that use structured light for constructing depth maps.
If the situation occurs that the depth at the current image
location of a point feature trajectory is invalid, we provide
a depth estimate from previous depth values and velocities. In
the case where a velocity estimate for the trajectory exists, we



estimate the current depth from the previous depth, the esti-
mated velocity and the video frame rate by linear prediction.
If no estimated velocity is available we assume the depth to
be stationary.

C. Transformation to World Coordinates

In order to match acceleration sequences captured by ac-
celerometers, which are measured in terms of meters per
second squared (m/s?), the image locations of point trajec-
tories, which are represented in terms of pixels, need to be
transformed into world coordinates represented in meters by
using the camera’s intrinsic parameters. Then, through dif-
ferencing and with known video frame rate, we derive metric
velocities and accelerations. As accelerometers measure proper
acceleration as opposed to coordinate acceleration measured
by a camera, we calibrate the camera for the direction of grav-
ity and superimpose gravitational effects on the acceleration
sequences estimated from point feature trajectories.

We used functions provided by OpenCV [6] to determine
intrinsic parameters as proposed by Zhang [26] and distortion
coefficients as proposed by Brown [2] from several views
of a chessboard pattern. The library also provides functions
to calculate undistorted image locations that we use when
transforming image locations into world coordinates.

Let the focal length be f, the dimensions of the image
elements be s, s, and the principal point be (c;,c,). Given
an undistorted image location (z,y) and an associated depth
z (either from a depth map or fixed), we transform locations
on trajectories from image into world coordinates as follows:

(x —cg)z
ISz

D. Visual Acceleration Estimation

(y—cy)z

X =
fsy

Y = Z=z (1)

Following transformation to world coordinates, trajectories
T; are described as sequences of locations 1, : (X¢,Y;, Zy).
Let f,;q be the constant video frame rate. Considering a
consecutive pair of locations 1,_; and l;, the velocity v; at
time ¢ is given by

vi= 1 —L—1)/fia 2

The acceleration a; at time ¢ given v; and v;_; is computed
analogously.

In order to avoid instabilities in the estimated velocities and
accelerations, which occur frequently when approximating a
differential by discrete differences [19], we smooth locations
in world coordinates on each trajectory with a Gaussian with
zero mean and some small standard deviation. Note that
because of this smoothing procedure, which takes some low
number of future locations on a trajectory into account to
estimate the current smoothed location, the estimates v; and
a; will only be available with some fixed delay.

As a final processing step before point feature trajectories
are compared with device accelerations measured by an ac-
celerometer, we need to add the gravity component to all

estimated accelerations a;. While the magnitude of gravity
at the earth’s surface is well known (we use standard gravity
lg| = 9.80665m/s%), the direction relative to the cameras
coordinate system depends on the positioning of the camera.

We extract the direction of gravity indirectly from the
depth map of surfaces that are assumed to be perpendicular
to the direction of gravity, for example a work surface or
a floor. We mark a set of at least three points on one of
these surfaces on a single depth frame. The marked points are
transformed into world coordinates as explained above. Then,
the direction of gravity is estimated by forming the co-planar
vectors a = p1 — pg and b = ps — pg, computing the surface
normal using the cross-product and normalizing the result.
This result may be refined by sampling the points pg, p; and
p2 multiple times from a larger number of marked points and
averaging the estimated surface normals or by fitting a plane
through these points using e.g. least squares prior to surface
normal estimation. The gravity vector g points in the estimated
direction.

The final acceleration estimation a; of a point feature
trajectory at time ¢ is given by a} = a; + g.

E. Accelerometer Data Interpolation

In the general case the frame rate of a video camera
fuvia and the rate f,.. with which an accelerometer captures
its data are not equal. For two acceleration estimates to be
comparable, however, they need to correspond to the same
distinct point in time. As in our case f,;q is lower than f,.,
we linearly interpolate acceleration samples captured by the
accelerometers. Note that for this procedure to be valid we
need to assume that accelerometer data and video data are
synchronized.

Once we interpolate the accelerometer frames for all video
frames, the resulting streams A%’ : (a2 ... a%c) and
Avid . (apid, ... apd) are comparable and ready to be
matched for localization.

F. Similarity Measure

Localizing an accelerometer in the camera’s field of view
based on acceleration sequences estimated from point feature
trajectories involves measuring the similarity between the se-
quences AV and A4<’ for each trajectory and accelerometer.

We update similarity estimates in an online manner with
each video frame. Therefore, we define the initial similarity
of an empty sequence with the accelerometer stream to be zero

id ¢’
S(A7, A7) =0 3)
for each point feature trajectory 7 = 0, ..., /N and accelerom-
eter j = 0,...,M. As we do not assume a fixed orientation

of the accelerometer in the scene or estimate its pose from
data, we consider only the norms of the acceleration vectors.
The norms are thresholded to suppress errors caused by
sensor measurements, inaccurate visual tracking and imprecise
synchronization. If both the acceleration measured by the
accelerometer and the acceleration estimated from a point
feature trajectory exceed this threshold 7'°“ in the current



frame, the similarity between the corresponding trajectory
and the accelerometer is incremented by one. In order to
reduce the impact of frames in the past on the similarity, we
devise a recursive function with multiplicative temporal decay
a € [0,1). The resulting similarity measure may be expressed
more formally as follows:

Se(Ay, A5e) =ar- Syma (AP, A3
41 [|a|;}zd > Tecc A ‘a|?cc > Tacc] , (4)

where ¢ is the index of the last available video frame and
1]] is the indicator function. The similarity between a point
feature trajectory and an accelerometer stream is thus defined
as the number of frames in which both capture significant
acceleration, giving higher weight to the contribution of recent
frames.

Recall that trajectories are initialized if the number of active
trajectories is too low or if some areas of the camera’s field
of view are currently not covered by any active trajectory
(as explained in Sec. III-B). In the latter case the number of
active trajectories may grow indefinitely, which is undesirable.
Therefore, we employ a distance threshold 7t¢r™inate [f the
distance between the locations in the most recent frame of a
pair of trajectories is smaller than this threshold, the trajectory
that has been tracked for a smaller number of frames is
eliminated.

Consider a trajectory that is being newly initialized at a
point in time at which other trajectories have already been
tracked for a large number of frames. As can be seen from Eq.
(4), these trajectories accumulate a potentially high similarity
measure over time. To increase the effectiveness of our algo-
rithm in this case, we do not initialize the similarity measure
of the new trajectory to zero. Instead, we set its similarity
equal to the similarity of the trajectory corresponding to the
location of the closest tracked point.

G. Localization

Finally, we estimate the location of an accelerometer as the
location in the most recent frame of the point feature trajectory
with highest similarity. In rare cases in which more than one
active trajectory has the same similarity (usually occurring at
initialization), the algorithm does not give a location estimate.
Despite its simplicity, the localization algorithm performs
reasonably well in practical scenarios (see Sec. IV-C).

IV. EVALUATION

In this section we present evaluation results for the local-
ization algorithm described in Sec. III above. We start by
explaining the experimental setup and describing how the
dataset was collected, synchronized and annotated.

A. Experimental Setup

We collected data of a person preparing a salad in our
laboratory kitchenette (see Fig. 3). We used wireless ac-
celerometers developed in CultureLab at Newcastle University,
which capture translational acceleration along 3-axes at 50Hz

Fig. 3. Experimental Setup: Laboratory kitchenette with Kinect facing the
work surface and accelerometers attached to utensils with tape (top left).

with 16-bits per axis. The data are transmitted over IEEE
802.15.4-2006 radio. All frames are timestamped upon arrival
at the server. The recorded times are therefore subject to jitter
and usually do not exactly correspond to the times at which
the acceleration measurements were actually captured.

As visual sensor we used a Microsoft Kinect which has
an RGB camera and produces depth maps from near-infrared
structured light. The depth maps have a per pixel resolution
of 11 bits. A non-linear function maps these depth values to
metric units. An operating range of e.g. [lm, 3m] is therefore
represented by only about 250 distinct values. Color and
depth images have a spatial resolution of 640x480 pixels and
are produced at about 30 frames per second. We recorded
timestamped color and depth images.

The Kinect was mounted to have a top-down view of the
work surface. It was attached to an adjustable arm on a vertical
bar, providing a high degree of flexibility in positioning. It
was connected to a laptop computer on which the recording
software was executed. We adjusted the camera manually to
roughly align the work surface with the image plane. At an
operating height (distance between sensor and work surface)
of 100cm and with 22cm distance to the wall, the camera
captured a 108cm wide area of the work surface.

B. Dataset

The dataset contains 13,263 frames of combined color and
depth data and 31,346 frames of 3-axis acceleration data
capturing a person preparing a mixed salad. Note that the
acceleration data were captured by a total of three devices
some of which were sometimes moved at the same time (e.g.,
the spoon and the bowl move concurrently while the salad
is being mixed before serving). The utensils with attached
accelerometers were a spoon, a plastic bowl and a knife. A
chopping board was also used in this experiment but was not
equipped with an accelerometer. Ten ingredients were used in
total to prepare the salad: balsamic vinegar, beetroot, cheese,
courgette, green salad, olive oil, pepper, red onion, salt and



[ ID | Description [ #Frames |
1 | Knife Synchronization Signal 203
2 | Moving Spoon From Bowl To Worktop 25
3 | Spoon Mixing Dressing 310
4 | Knife Slicing Beetroot 296
5 | Khnife Scraping Beetroot Into Bowl 125
6 | Knife Scraping Courgette Into Bowl 45
7 | Knife Scraping Cheese Into Bowl 106
8 | Knife Scraping Green Salad Into Bowl 85
9 | Knife Slicing Green Salad 45
10 | Knife Slicing Green Salad 2 170
11 | Knife Scraping Green Salad Into Bowl 123
12 | Knife Dicing Tomatoes And Moving Into Bowl 1133
13 | Spoon Mixing Salad 375
14 | Spoon Mixing Salad 2 95
15 | Spoon Serving Salad Into Plates 798
16 | Knife Synchronization Signal 2 233

[ [ Total [ 4167 |

TABLE I
TEST SEQUENCES: SUBSEQUENCES WITH AT LEAST ONE
ACCELEROMETER MEASURING SUBSTANTIAL ACCELERATIONS OVER AN
EXTENDED PERIOD OF TIME.

tomato. Ingredients did not carry any sensors or tags.

As the timestamps of video and accelerometer frames
were not synchronized, we synchronized the data as a pre-
processing step by establishing correspondences in both data
streams. For this purpose the experimenter hit the knife with
an accelerometer attached to it repeatedly on the work surface
producing strong signals in both the accelerometer and the
video (depth) stream; five times before and after the exper-
iment. An annotator manually marked the correspondences
at the start and the end of the experiment separately. Using
least squares estimation, we estimated one time-offset for the
start and one offset for the end of the sequence. As these
offsets tend to diverge, we linearly interpolated timestamp
correspondences between the start and end points of the
sequence. Note that synchronization could be more easily
accomplished with cameras and accelerometers that can be
triggered. However, we did not use such specialized hardware.

In order to evaluate the performance of our accelerometer
localization algorithm quantitatively, we annotated the loca-
tions of the three accelerometers in every frame in the dataset.
For each pair of video frame and accelerometer, the annotator
clicked on the image at the estimated geometric center of the
device. As accelerometers were covered by tape and frequently
occluded by the participant’s hand, we cannot assume these
labels to be exact. Nevertheless, from visual inspection we can
confirm that the marked locations were reasonably close to the
true center locations for our purposes.

For testing our localization algorithm we identified 16
subsequences in the video in which at least one of the
accelerometers measured substantial accelerations over an ex-
tended period of time. These subsequences are listed in Table
I. The localization performances reported in the following
sections were based on testing each of these subsequences
separately, re-initializing the algorithm at the start of each
subsequence.

C. Experiments

For quantitative evaluation of different algorithm configura-
tions we use the average per frame Euclidean distance of an
estimated accelerometer location to the ground truth point in
terms of pixels in the image plane.

1) Sparse vs. Dense Optical Flow: For the first stage of
our localization pipeline (see Fig. 2) we compare two different
methods to extract point feature trajectories from video data:
sparse point feature tracking and dense optical flow (see Sec.
1II-B).

For KLT tracking we set the maximum number of active
trajectories to N = 96 and the minimum distance between
trajectories to d = 14 pixels. For trajectories from dense
optical flow we set the distance between grid points to d = 24
pixels, initializing 336 trajectories at equidistant locations.
These values have shown good performance in preliminary
evaluation experiments not reported here.

Intuitively, a larger number of trajectories is expected to
increase localization accuracy as the true trajectory is more
likely to be found in the sample. Nevertheless, in preliminary
experiments, using more than 96 active trajectories with KLT
and more than 336 initial trajectories with dense optical
flow has not been beneficial to localization performance. Pre-
sumably a lower number of trajectories increases robustness
against artifacts in the estimated flow fields.

Locations were smoothed over time for estimating visual
accelerations with a Gaussian with standard deviation o =
ﬁj‘i. For measuring similarity, we used a temporal decay of
a = 0.9982 and terminated trajectories from dense optical
flow with a threshold distance of rtérminate — 5 pixels
(see Sec. III-F). Table II shows evaluation results for these
configurations using the depth provided by the camera and
using a fixed depth, Z = 0.9m. The depth was chosen based
on a distance of the work surface to the camera of about 1.1m.
Recall that this distance is used to convert image into world
(metric) coordinates in Eq. (1). While the region of interest
as indicated in Fig. 1 is used to compare effects of distance
estimation on localization performance, we also report results
based on the entire image region (ROI off) with fixed depth.

There are three major observations resulting from these
experiments. (i) Trajectories constructed from dense optical
flow estimates are shown to perform significantly better than
those from sparse tracking. We attribute this substantial dif-
ference in localization performance to the smoothness of the
dense flow field as opposed to frequently occurring false point-
feature correspondences with KLT. (ii) The 3D extension of
trajectories as proposed here - annotating trajectories with the
depth from the Kinect - does not outperform localization based
on a user-defined constant depth. Acceleration sequences con-
structed with measured depth performed significantly worse
than those assuming a constant depth, for trajectories from
KLT tracking and dense optical flow alike. This might be due
to the fact that the depth maps produced by the camera are
not reliable enough for our purposes. Holes in the depth maps
on areas that lie in the shadow of the structured light pattern,
and point trajectories frequently crossing depth-discontinuities,




KLT Dense Optical Flow

Depth ROI Depth ROI

1D #Frames | fixed | var. | off | fixed | var. | off
1 203 74 56 65 32 50 42
2 25 206 313 217 92 99 182
3 310 23 28 24 25 35 33
4 296 19 28 59 49 32 61
5 125 143 215 139 53 46 66
6 45 89 259 118 67 94 152
7 106 67 79 128 89 84 67
8 85 138 146 181 48 69 73
9 45 131 213 71 92 74 165
10 170 66 304 | 210 36 91 196
11 123 65 81 132 93 114 96
12 1133 60 184 209 23 179 20
13 375 62 63 66 97 105 173
14 95 81 87 235 54 76 150
15 798 135 265 141 52 104 108
16 233 38 338 57 74 85 80

[Total [ 4167 | 76 [ 167 [ 134 [ 49 [ 106 | 79 |
TABLE II

SPARSE VS. DENSE OPTICAL FLOW: DIFFERENT TRAJECTORY
CONSTRUCTION METHODS WITH DEPTH FROM THE CAMERA (VARIABLE)
AND HARD-CODED (FIXED). PERFORMANCE IS REPORTED AS AVERAGE
EUCLIDEAN DISTANCE OF ESTIMATED ACCELEROMETER LOCATION TO
GROUND TRUTH IN PIXELS.

might be major issues in this context. A more sophisticated
method of extending point feature trajectories to the 3D case,
in which depth-discontinuities and noise in the raw depth
maps are specifically taken into account, could improve these
results, especially for scenarios in which the accelerometer is
moved along the camera’s view axis. (iii) Narrowing down
the location search space with a smaller region of interest in
the image increases localization accuracy as expected. While
the whole image region also covers some space in front of
the work surface, which is in large parts occupied by the
participant’s body, this region is completely cropped in the
latter configuration, eliminating a large fraction of sources of
confusion for the localization algorithm. Based on these results
we continue our evaluation solely with trajectories constructed
from dense optical flow with fixed depth applied to the ROI.

2) Temporal Decay: While it is obvious that we need to
limit the effect of frames far in the past on the present simi-
larity measure, there are several different ways to model this
behavior. We propose a temporal decay that reduces the impact
of such frames gradually. Fig. 4 shows localization accuracy
as a function of various values for the decay parameter a.. As
can be seen, localization accuracy decreases drastically when
the decay is not chosen to be close to 1. The value of the
parameter o = 0.9982 used in the previous section showed the
best performance in our experiments. The performance gain
compared to no temporal decay was rather small (1.04 pixels
on average), which might be due to the limited length of the
test-sequences. We expect to see more significant improvement
when running the accelerometer localization algorithm over an
extended period of time.

3) Comparison to Normalized Cross-Correlation: We
also compared our similarity measure to normalized cross-
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Fig. 4. Temporal Decay: The contribution of past frames to the similarity
measure is reduced by a multiplicative factor «. The average Euclidean
distance of estimated accelerometer location to the ground-truth in pixels here
is the total score over all subsequences. The result of each test is weighted
by the number of frames in the corresponding subsequence.

correlation (NCC) as used by Maki et al. [14]. For a fair
comparison between NCC and the proposed similarity measure
we applied NCC to trajectories constructed from dense optical
flow. Estimated accelerations along point trajectories were
correlated with the interpolated acceleration data captured
by an accelerometer. Results of accelerometer localization
using NCC with varying length of temporal sliding window
are presented in Table III. Localization accuracy reached its
maximum at a window size of about 150 frames with an
average Euclidean distance to the ground-truth of 114 pixels.
This time window corresponds to an interval of five seconds.

V. CONCLUSION & FUTURE WORK

In this paper we presented a new method for localizing
an accelerometer in the field of view of a stationary camera,
which is easy to implement and fast to compute. We quan-
titatively evaluated our algorithm confirming superior perfor-
mance of trajectories from dense optical flow in the context
of accelerometer localization. The proposed method shows
higher localization accuracy than the state-of-the-art. Given
the significant difference of the best performance achieved
with the proposed similarity measure compared to NCC (49
vs. 114 pixels) we conclude that the proposed method is
better suited to localizing an accelerometer in a camera’s view.
We consider a distance between the estimated accelerometer
location from the ground truth of about 49 pixels on average,
which corresponds to about 8cm at a distance of 90cm from
the camera, to be a good localization result, especially because
this average value also contains the distances of outliers.

Additionally, we presented a first attempt at extending point
feature trajectories to 3D. Our evaluation suggests that a more
effective way of combining color and depth information is
necessary in this regard. Arguably, the performance measure
used here provides little evidence to the frequency with which
an estimated accelerometer location actually lies on the device
that is to be localized or on an object that is physically
connected to the accelerometer. In future work we plan to



NCC Sliding Window Size
10 15 20 30 40 50 60 80 100 150 200 300
Total | 199.28 | 188.10 | 184.25 | 163.78 | 150.06 | 138.81 | 131.07 | 121.79 | 117.01 | 114.46 | 114.93 | 115.00
TABLE III

NORMALIZED CROSS-CORRELATION: LOCALIZATION ACCURACY WITH VARYING LENGTH OF THE TEMPORAL SLIDING WINDOW. THE AVERAGE
EUCLIDEAN DISTANCE OF ESTIMATED ACCELEROMETER LOCATION TO THE GROUND-TRUTH IN PIXELS HERE IS THE AVERAGE OVER ALL FRAMES IN
ALL SUBSEQUENCES.

use more informative measures.

By enforcing a unique point estimate for the location of
an accelerometer we discard large parts of useful information
provided by a similarity map. If for example none of the point
trajectories show a strong similarity with an accelerometer
after an extended period of time, this could indicate that
the accelerometer is outside the camera’s field of view. If,
on the other hand, trajectories in two (or more) distinct
image locations show strong and almost equal similarity to an
accelerometer, both location hypotheses should be evaluated.
If this localization algorithm is used as a low-level component
of, e.g., an activity recognition system it would be useful to
utilize the estimated similarity maps as inputs to higher-level
processing modules.

In future work we will extend our approach to localizing
multiple accelerometers and investigate long-term tracking
behavior. In the longer term we plan to automatically recognize
interactions of kitchen utensils and ingredients using the
locations of accelerometers in the view of a camera.
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