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ABSTRACT
One way in which technology can help people with cogni-
tive impairments to stay independent for longer is through
situational support systems that recognize a person’s activ-
ities and provide help if needed. While food preparation is
one of the most important tasks of daily living, such activi-
ties are extremely challenging to recognize automatically as
they involve a large number of different objects, gestures and
cognitive capabilities. This paper introduces an approach to
recognizing food preparation activities using statistical ma-
chine learning based on visual and accelerometer data. As
a first step towards multi-modal activity recognition, an ac-
celerometer localization algorithm has been developed that
provides important information for fusing visual and ac-
celerometer data. We discuss a statistical activity model
that will be used to guide the construction of datasets for
complex activities and give an outlook on the next steps.

Categories and Subject Descriptors
I.5.5 [Pattern Recognition]: Applications; I.2.10 [Vision
and Scene Understanding]: Video Analysis

General Terms
Algorithms, Human Factors, Measurement

1. INTRODUCTION
Development of new assistive technologies gains in impor-

tance with the steadily increasing ratio of people needing
personal care to those able to provide care. Situational sup-
port systems recognize and track a person’s activities, iden-
tify situations where help is required and provide support
by issuing guiding prompts to the user. Although prototype
support systems of this kind exist for individual tasks such
as hand-washing [1, 2], there are still many challenges to
overcome. For example, systems need to be easily adapt-
able to a particular person’s home and cognitive capabilities
for easy deployment. Furthermore, they would need to be
able to robustly track and guide through a wide range of
activities in order to offer substantial benefit to the user.
Activities in the kitchen environment are particularly com-

plex as they involve a large number of different objects, ges-
tures and cognitive capabilities. Additionally, many indi-
viduals maintain unique sets of recipes and personal varia-
tions of common recipes. These characteristics among others
make it hard to automatically recognize and track through

Figure 1: Camera View: Point features (coloured
dots) are tracked over time (yellow lines represent
trajectories). By measuring similarity of acceler-
ations along these trajectories with accelerometer
data (black indicates weakest, and red indicates
strongest similarity), the algorithm estimates the
accelerometer location (red circle). The red, green
and blue crosses mark the ground-truth locations of
accelerometers attached to the spoon, the bowl and
the knife, respectively.

food preparation activities.
While previous approaches to activity recognition for sit-

uational support make use of either pervasive sensors (e.g.,
RFID or accelerometers) or visual sensor technology, we pro-
pose to combine embedded accelerometers and computer vi-
sion techniques to overcome some of the limitations of cur-
rent systems.

In previous work, Pham et al. [4] developed a method
for recognizing food preparation actions such as chopping,
peeling, stirring and scooping using accelerometer data from
accelerometers embedded in knifes and spoons. Although
these motion patterns certainly appear in the context of var-
ious recipes, this approach does not recognize the ingredients
acted upon (e.g., what is being chopped), which is important
for tracking progress in a recipe.

We propose to leverage the precise motion data captured
by accelerometers and the spatial information that can be



Figure 2: Experimental setup

extracted from visual data by combining these modalities for
recognizing complex utensil-ingredient interactions. With
this approach we hope to close the gap between recognizing
utensil actions and tracking through a complex food prepa-
ration task.

2. SENSOR FUSION
Data from different sensor types can be combined at var-

ious stages of the recognition pipeline, for example before
classification in feature space (early fusion) or after sepa-
rately recognizing actions from different types of sensor data
(late fusion).
Late fusion is easy to implement as an incremental exten-

sion of activity recognition algorithms that use either of the
different types of sensor data. If recognition results can be
interpreted as probability distributions over action classes,
classifiers may be combined using simple schemes such as
the product-rule or the sum-rule [3].
Early fusion using simple schemes such as concatenating

feature-spaces generally does not produce satisfactory recog-
nition performance. Combining data from different sensor
types in a more clever way, i.e., exploiting dependencies be-
tween data streams and domain knowledge, however, has the
potential to significantly outperform late fusion methods.
We identified the localization of an accelerometer in the

camera’s field of view as a potentially powerful mechanism
for fusing vision and accelerometer data. Localizing an ac-
celerometer in the visual field may allow the modeling of
activities involving utensil-ingredient interactions by focus-
ing visual attention on the image region that is in spatial
proximity to the accelerometer location. Actions such as
cutting, peeling and scooping could be combined with infor-
mation about the object acted upon, defining activities such
as peeling an apple.
We have developed a prototype in which accelerometers

are localized by comparing accelerometer data with acceler-
ation along point trajectories extracted from video data (see
Figure 1). The similarity between individual point trajec-
tories and accelerometer data is measured incrementally by
comparing both visual and device acceleration to a thresh-
old with temporal decay. For technical details we refer the
interested reader to [5].
To evaluate this method, we collected data of a person

preparing a mixed salad. The experimental setup is depicted
in Figure 2. Three accelerometers were attached to a knife,

Figure 3: Accelerometer localization accuracy

a spoon and a bowl. Ingredients did not carry any sensors
or tags. A camera was mounted to have a top-down view
of the work surface. In order to evaluate the performance
of our accelerometer localization algorithm quantitatively,
we annotated the locations of the three accelerometers in
all frames by hand. Figure 3 shows the fraction of pre-
dicted locations within some radius of the ground truth ac-
celerometer location for different algorithm configurations.
Method DoF-NCC is the baseline method for comparison us-
ing normalized cross-correlation, and KLT-TDT and DOF-
TDT are the new threshold method with KLT tracking and
dense optical flow, respectively. The method of [5] using
dense optical flow worked the best.

3. DATASETS OF COMPLEX ACTIVITIES
For statistical machine learning algorithms it is crucial

that the data represent the target domain well. In the con-
text of recognizing simple actions such as running, jumping,
boxing and waving, variation in video data is mainly due to
different people performing those actions differently, and in
some cases due to changing background clutter. When ob-
serving a person performing multi-step activities interacting
with a number of different objects, different orderings in
which these steps are carried out induce strong variation on
the configuration and appearance of objects in the scene.
In the context of preparing a mixed salad, for example, the
scene looks different after preparing the dressing, depending
on whether the ingredients of the salad have been cut and
mixed already. In order to build robust activity models for
recognition it is convenient to have a balanced dataset that
contains roughly the same number of examples for all likely
task-orderings.

In practice it is costly to acquire annotated video data of
a large number of people performing the same multi-step ac-
tivity. Additionally, the task-orderings the recorded sample
population chooses naturally are potentially highly imbal-
anced. Therefore, we propose to sample task-orderings from
a statistical activity model and ask participants to follow
the steps of a recipe in orderings generated by the model.
An example of a statistical activity model for preparing a
mixed salad is illustrated in Figure 4.



Figure 4: Activity model

The model is based on Activity Diagrams used in com-
putational process specification and analysis. Every choice-
node of the diagram (represented by a horizontal bar with
multiple outgoing arcs) is augmented by a probability distri-
bution over all options representing the probability of choos-
ing each option when that choice-node is reached. The prob-
abilities in Figure 4 are set to be uniform to ensure that the
dataset generated using task-orderings sampled from this
model is balanced.
Using the statistical activity model to generate orderings

of tasks reduces the risk of misrepresenting an activity with
the idiosyncrasies of a small number of participants. In ad-
dition to creating balanced datasets of complex activities,
the statistical activity model may potentially serve as a ref-
erence structure for tracking through such an activity. In
this case probabilities associated with choice-nodes should
reflect prior knowledge about the probability of choosing
one option over others.

4. DISCUSSION & FUTURE WORK
With the statistical activity model introduced in the pre-

vious section we will construct a dataset containing anno-
tated accelerometer and video data of people performing
food preparation activities. We will use this dataset to eval-
uate (i) machine learning algorithms for recognizing food
preparation activities based on accelerometer and video data

individually, in order to analyze the relative strengths of
different sensor types, and (ii) recognition models based on
the combined data in order to investigate different sensor
fusion techniques for multi-modal activity recognition. In
this context we plan to compare late fusion combining clas-
sifier results and an early fusion technique that specifically
takes the accelerometer location into account to guide visual
attention.

The combination of computer vision with embedded sen-
sors could enable recognition of complex interactions and
tracking through food preparation tasks, which is essential
for providing situational support in the kitchen. While pre-
vious work focussed on recognizing utensil actions based on
embedded sensors, the approach presented here puts those
actions into the context of the recipe and the ingredients
acted upon. Although for an implementation with people
with dementia further challenges remain, the current work
is an important step towards being able to provide support
to help people live longer in their homes and assist with
tasks of daily living.
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