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ABSTRACT
This paper introduces a publicly available dataset of com-
plex activities that involve manipulative gestures. The dataset
captures people preparing mixed salads and contains more
than 4.5 hours of accelerometer and RGB-D video data, de-
tailed annotations, and an evaluation protocol for compari-
son of activity recognition algorithms. Providing baseline
results for one possible activity recognition task, this pa-
per further investigates modality fusion methods at different
stages of the recognition pipeline: (i) prior to feature extrac-
tion through accelerometer localization, (ii) at feature level
via feature concatenation, and (iii) at classification level by
combining classifier outputs. Empirical evaluation shows
that fusing information captured by these sensor types can
considerably improve recognition performance.

Author Keywords
Activity recognition, sensor fusion, accelerometers, com-
puter vision, multi-modal dataset

ACM Classification Keywords
I.5.5 Pattern Recognition: Applications; I.4.8 Scene Analy-
sis: Sensor Fusion; I.2.10 Vision and Scene Understanding:
Video Analysis; K.4.2 Social Issues: Assistive Technologies
for Persons With Disabilities

General Terms
Algorithms, Documentation, Experimentation, Measurement,
Performance.

INTRODUCTION
We aim to stimulate research in the area of complex activ-
ities that involve manipulative gestures, as occurring fre-
quently in food preparation, manufacturing and assembly
tasks. Therefore, we provide a carefully designed dataset
taking a novel approach to multi-modal sensing: video data
and data from accelerometers attached to objects were recor-
ded simultaneously (see Figure 1).

To appear in the Proceedings of the 2013 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing (UbiComp 2013).

Figure 1. Snapshot from the dataset. Data from an RGB-D camera and
from accelerometers attached to kitchen objects were recorded while
25 people prepared two mixed salads each. Activities were split into
preparation, core and post-phase, and these phases were annotated as
temporal intervals.

One potential application of recognition methods evaluated
on this dataset is cognitive situational support. Ubiquitous
computing has great potential in addressing the challenges
of an aging population by providing automatic situated sup-
port for people with cognitive impairments [7, 8, 20]. En-
abling people with, e.g., dementia to stay longer in their
homes and to perform activities of daily living (ADL) inde-
pendently of a social carer arguably increases their perceived
quality of life [27] and significantly reduces the social cost
associated with cognitive impairments. Food preparation is
one of the most essential ADL tasks. Automatically recog-
nizing food preparation activities is extremely challenging
for various reasons. Usually a recipe involves a large num-
ber of complex interactions between hands, utensils, ingre-
dients, etc. in a constrained but non-unique order and with
personal variations. In a situational support system actions
must be recognized online, imposing strong constraints on
computational cost and requiring temporal segmentation of
activities, a hard problem in itself. Modelling and tracking
activities at a detailed level and issuing sensible promptsto
the user are further open research problems. Despite some
characteristics that are unique to processing food, many of
the challenges faced in this context re-occur in the context
of tracking and guiding a person through other complex pro-
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cesses such as manufacturing and assembly tasks. The study
of recognizing food preparation activities has therefore huge
potential to push the boundaries of automatic activity recog-
nition in general.

While RFID and embedded accelerometers are inconspicu-
ous and cost-effective they do not provide sufficient data to
reason about complex interactions between multiple tagged
objects and about their interaction with untaggable objects
such as food. Computer vision may be used to establish spa-
tial relationships and enable reasoning about the interaction
between visual entities, but recognizing and tracking ob-
jects under illumination changes, occlusion, intra-classap-
pearance variations and object deformations are challenging
problems. The combination of complementary information
from multiple sensor types helps to address some of these
issues.

In the ubiquitous computing research community, video is
mainly recorded to enable manual annotation of theactual
sensor data from, e.g., RFID readers, accelerometers and gy-
roscopes. Often video is not recognized as a valid source of
information due to the widespread belief that cameras are
too intrusive and would not be acceptable. Over the past few
years the number of cameras per household has grown ex-
ponentially through the emergence of smart-phones, tablets,
and video-based input devices such as Kinect. While users
may object to the idea of another person watching them via
CCTV-like installations in their homes they are often ac-
cepting of visual sensors as part of a closed system that en-
ables desirable services. In the computer vision community
some multi-modal activity recognition datasets have been re-
leased, including synchronized video, RFID, audio and IMU
data. Interestingly, in all of these datasets accelerometers
and gyroscopes have been attached to the subject’s body,
which is practically inconvenient in the context of situational
support systems. In pervasive intelligent environments itis
therefore common practice to embed sensors in objects in-
volved in an interaction instead [2].

This paper introduces a dataset including video data and
data from accelerometers attached to objects. Design deci-
sions, the experimental setup, annotation and evaluation pro-
tocols are discussed in detail. We also provide benchmark
results for one particular activity recognition problem onthis
dataset. We propose to combine video and accelerometer
data through accelerometer localization and show that fus-
ing features at early stages of the recognition pipeline signif-
icantly increases activity recognition performance. In sum-
mary, the contributions of this paper are:

• A multi-modal activity recognition dataset including more
than 4.5 hours of annotated accelerometer and RGB-D
video data, which is the first of its type.

• A novel method for fusing accelerometers and computer
vision for activity recognition.

• Experimental evaluation of the proposed method and com-
parison of various fusion methods on the new dataset, in-
cluding a protocol for benchmarking.

RELATED WORK

Existing Datasets
Several public datasets for benchmarking activity recogni-
tion algorithms exist in the fields of wearable computing [10,
18, 21, 29] and computer vision [14, 15, 17, 22, 23, 25, 4].
One reason for the multiplicity of datasets is that the terms
activity and recognition are used for varied concepts. In
many casesrecognition means offline classification, where
data from an entire video clip is used to determine it’s activ-
ity class (e.g., KTH [23], YouTube [14], Hollywood2 [15]
and URADL [17]). In others, however,recognition addi-
tionally includes identifying the temporal (and spatial) ex-
tent of an action, also referred to as activity detection or
spotting (e.g., Darmstadt Daily Routines [10], AmbientK-
itchen [18], TUM Kitchen [25], CMU-MACC [4], Opportu-
nity [21], ICPR-KSCGR1 and MPII-Cooking [22]). Datasets
supporting activity spotting have the benefit that they can
also be used purely for classification. The dataset presented
in this paper includes continuous sequences of complex in-
teractions involving multiple objects that can be used for
classification, activity spotting and progress tracking.

The term activity is used even more broadly and may refer
to atomic gestures (e.g., grasp) [21], simple, repetitive,ar-
ticulated full body motions [23], fine-grained hand gestures
[18], or complex inter-actions of multiple objects [10]. Ac-
tions are also described with varying level of detail and may
contain only a verb (e.g., boxing, waving, cutting, adding)
or may additionally include the objects interacted with (e.g,
picking up cafeteria food) [10]. Furthermore, the total set
of activities considered in a dataset may be very broad (e.g.,
actions in movies [15] or web video clips [14]) or scenario-
specific (e.g., car assembly-line checkpoint [29] or food pre-
paration [18]). This choice affects inter-class variability. A
classification problem with high inter-class variability and
low intra-class variability is easier than one with low inter-
class variability and high intra-class variability. Our dataset
contains activities with low inter-class variability and high
intra-class variability as well as detailed activity annotations
including the identities of objects involved (e.g.,place tomato
into bowl).

Recently several datasets of kitchen activities have been re-
leased that combine visual and non-visual sensor types. The
CMU-MMAC [4] contains data from multiple cameras and
body worn IMUs, BodyMedia and an eWatch. The cam-
eras are placed to overlook large parts of the kitchen as in
a surveillance scenario. Participants wear a suit with IMUs
placed at joint locations and a helmet with an attached cam-
era. Such a sensor placement is arguably infeasible for prac-
tical assisted living solutions as the camera positioning is ob-
trusive and wearing the suit is strongly disruptive. The TUM
Kitchen dataset [25] contains video and RFID data of peo-
ple dressing a table. Cameras were placed similarly to the
CMU-MMAC dataset and RFID sensors were embedded at
three locations in the kitchen. Although participants did not
have to wear a sensor-suit in this scenario, the camera posi-
tioning was intrusive. The activities captured in this dataset
1http://www.murase.m.is.nagoya-u.ac.jp/
KSCGR/index.html
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did not involve objects that are untaggable with RFID. One
major challenge for recognizing food preparation tasks is,
however, that sensors cannot be attached to food. The use of
RFID readers in the kitchen is also very limited due to the
fact that there is no small number of distinct strategic loca-
tions that would suffice to be equipped with RFID readers.

Pham et al. [18] replaced the handles of kitchen utensils with
Wii-controllers capturing tri-axial accelerometer data.We
extended their approach by attaching accelerometers to var-
ious kitchen objects and by combining these sensors with an
RGB-D camera facing the work-surface. Such a sensor setup
is affordable and feasible to integrate into a home kitchen.

Activity Recognition
In both computer vision and ubiquitous computing commu-
nities, researchers have been shifting focus from recogniz-
ing simpleactions that correspond to distinct motion pat-
terns to assessing the quality of execution (e.g., skill) and
recognizing complex, broadly defined activities. The dataset
provided with this paper facilitates research in the latterdi-
rection in that it comprises annotated sequences of complex
multi-step activities. Additionally, important factors for ac-
tivity recognition to find its way into real world applications
are recognition at low computational cost, recognition of on-
going activities and activity prediction.

Activity recognition has a long history in computer vision
research, recently reviewed by Aggarwal and Ryoo [1]. Cur-
rently the most prominent approaches extract local appear-
ance and motion descriptors in the neighborhood of spatio-
temporal interest points [13] and point trajectories [26] fol-
lowed by discriminative classification via support vector ma-
chines. While these methods show good performance on
after-the-fact (offline) classification of articulated full body
motion and actions in movies, Rohrbach et al. [22] show
empirically that this approach is not well suited for recog-
nizing food preparation activities. In addition to yielding low
recognition performance, extracting local descriptors around
densely sampled locations as proposed in [26] is computa-
tionally demanding in real-time, e.g. at 30 Hz. It is therefore
crucial to investigate methods for activity recognition that
are faster and better suited to recognizing food preparation
activities for delivering situated guiding prompts.

For an overview of features proposed for accelerometer-based
activity recognition we refer the interested reader to the sur-
vey by Figo et al. [5]. Pham et al. [18] developed a method
for recognizing food preparation actions such as chopping,
peeling, stirring and scooping using accelerometer data from
accelerometers embedded in knifes and spoons. They ex-
tracted statistical features (mean, energy, variance and en-
tropy) in the time domain and computed pitch and roll for
encoding device orientation. Recently, Plötz et al. [19] pro-
posed feature learning for activity recognition from acceler-
ometers with deep belief networks. As feature learning is
costly and Pham et al. [18] reported good performance with
features that are very fast to compute, we use their set of
features for our analysis. The conclusions we draw regard-
ing the benefit of combining different sensor types based on

Activity #Inst. #Frames Core
add oil 55 27813 8161
add vinegar 54 23657 6572
add salt 53 11369 4995
add pepper 55 12912 6123
mix dressing 61 19492 14295
peel cucumber 53 62141 38613
cut cucumber 59 49853 38787
cut cheese 56 50680 26001
cut lettuce 61 53313 28847
cut tomato 63 68347 50768
place cucumber into bowl 59 16800 9071
place cheese into bowl 53 12753 6305
place lettuce into bowl 61 15159 7856
place tomato into bowl 62 13547 6418
mix ingredients 64 22917 16050
serve salad onto plate 53 35230 19110
add dressing 44 22428 12092
Total 966 518411 300064

Table 1. Dataset size in terms of activity instances and video frame
counts.

these features are expected to be similarly valid for other
features.

Combining various feature types and classification results
has been widely studied. Prominent approaches include mul-
tiple kernel learning as a feature combination method for dis-
criminative classification [16], and the sum-rule and product-
rule for classifier combination [11]. Wu et al. [28] combine
visual features with data from an RFID reader attached to
a person’s wrist in a dynamic Bayesian network for distin-
guishing between high-level activities in the kitchen. Video
and IMU data from mobile phones are combined in [9] for
indoor localization. Combining embedded accelerometers
and video has huge potential for activity recognition by pro-
viding complementary information. The localization of ac-
celerometers in the visual field as proposed in [24] is one
method for efficiently fusing these modalities. In this pa-
per we provide first empirical evidence using this method to
support recognition.

FOOD PREPARATION DATASET: 50 SALADS
We collected a dataset2 comprising annotated video and ac-
celerometer data of people preparing a mixed salad. We
first give a description of the experimental setup, partici-
pants, sensor synchronization and activity annotation before
we motivate the design decisions.

Dataset Details
An RGB-D camera (Kinect) was mounted on the wall to
have a top-down view onto the work surface. Accelerometers
were embedded in the handles of a knife, a mixing spoon and
a peeler. Further accelerometers were attached to a small
spoon, a glass, an oil bottle, and a pepper dispenser. We re-
corded visually aligned RGB and depth data with 640x480
2Dataset URL:
http://cvip.computing.dundee.ac.uk/datasets/
foodpreparation/50salads/
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pixels resolution at 30Hz. We used Axivity WAX3 wireless
accelerometers which are equipped with a rechargeable bat-
tery, microprocessor, 3-axis accelerometer, IEEE 802.15.4-
2006 radio and a micro-USB port for recharging and con-
figuration. These devices transmit acceleration data at 50Hz
with 16-bits per axis resolution. All samples are timestamped
upon arrival at the server. We chose not to use gyroscopes
as they significantly reduce battery life and their data ex-
hibit strong artifacts resulting from magnetic interference
with kitchen equipment. Figure 1 shows an example snap-
shot from the dataset.

We recruited 27 subjects of varied age, ethnic background
and cooking experience. All subjects prepared a mixed salad
two times totalling 54 sequences. Two subjects had to be ex-
cluded from the final dataset due to data loss. Preparing the
mixed salad involved preparing a dressing with salt, pepper,
olive oil and balsamic vinegar, cutting ingredients (cucum-
ber, tomato, feta cheese and lettuce) into pieces, mixing in-
gredients, adding the dressing to the salad and serving the
salad onto a plate. Participants were given a specific task
order to follow in each run. They were also told to perform
all activities within a fixed area on the work surface delim-
ited with tape, that marked the border of the camera’s field
of view. While no specific quantities for ingredients were
given, participants were asked to prepare a single portion of
salad for one person.

For sensor synchronization we performed an action that si-
multaneously produces strong signals in the video and the
accelerometer data at the start and the end of all sequences.
By establishing correspondences within these signals we es-
timated two temporal offsets per sequence, one for the start
and one for the end. We used linear interpolation for tempo-
ral alignment within this interval.

The following activities were annotated in the form of a start
time and an end time corresponding to their temporal extent:
add oil, add vinegar, add salt, add pepper, mix dressing,
peel cucumber, cut cucumber, place cucumber into bowl, cut
cheese, place cheese into bowl, cut lettuce, place lettuce into
bowl, cut tomato, place tomato into bowl, mix ingredients,
serve salad onto plate andadd dressing. Each activity was
split into three phases which were annotated individually:
pre-, core- and post-phase. Each activity was associated
with one of three stages in the recipe which were also an-
notated:prepare dressing, cut and mix ingredients andserve
salad. In total 966 activity instances were annotated. Anno-
tations spanned more than 500k video frames of which more
than 300k frames represented the core-phase of an activity.
Table 1 lists the numbers of instances and frames for all ac-
tivities.

Motivation for Design Decisions

Repeated Task Execution
We asked all participants to prepare a salad twice for two
reasons. First, people exhibit varying degrees of disorienta-
tion while preparing food if they are not within their usual
kitchen setting and without access to their own utensils. A
laboratory kitchen setup may add to that further through the

knowledge of being recorded. Therefore, we expect subjects
to behave more naturally in the second session as they had
time to get used to the laboratory kitchen in the first run. Sec-
ondly, recording subjects multiple times enables the studyof
idiosyncrasies and the comparison of different learning sce-
narios, e.g., same subject included in training data against
cross-subject generalization.

Task Order Sampling
When observing a person performing multi-step activities
interacting with a number of different objects, different or-
derings in which these steps are carried out induce strong
variation on the configuration and appearance of objects in
the scene. In the context of preparing a mixed salad, for ex-
ample, the scene looks different after preparing the dressing,
depending on whether the ingredients of the salad have been
cut and mixed already. In order to build robust activity mod-
els for recognition it is convenient to have a balanced dataset
that contains roughly the same number of examples for all
likely task-orderings. In practice it is costly to acquire an-
notated video data of a large number of people performing
the same multi-step activity. Additionally, the task-orderings
the recorded sample population chooses naturally are poten-
tially highly imbalanced. Therefore, we propose to sample
task-orderings from a statistical activity model and ask par-
ticipants to follow the steps of a recipe in orderings gener-
ated by the model. The statistical activity model for prepar-
ing a mixed salad we used is illustrated in Figure 2. The
model is based onActivity Diagrams used in computational
process specification and analysis. Every choice-node of the
diagram (represented by a horizontal bar with multiple out-
going arcs) is augmented by a probability distribution over
all options representing the probability of choosing each op-
tion when that choice-node is reached. The probabilities in
Figure 2 are set to be uniform to ensure a balanced distribu-
tion of task-orderings.

Each participant was given a different ordering of tasks to
follow in each session. Surprisingly, few participants pre-
cisely followed the task ordering given to them although they
were specifically instructed to do so. Our hypothesis is that
ordering tasks within a food preparation activity is strongly
governed by habit and personal reasoning. In cases where
subjects failed to correctly follow the instructions in thesec-
ond session, this error may also be due to the subject fol-
lowing the memorized task ordering of the previous session.
Although this behavior was unintended, the availability of
the instructed task ordering together with the annotated ac-
tivities may be used to experiment with detecting deviations
from the given task order.

Annotation
The pre- and post-phases of an activity include grabbing,
moving and placing utensils and ingredients. The core phase
captures actions that are essential. Takingadd oil as an ex-
ample, the pre-phase might consist of grabbing the oil bottle,
moving it over the dressing glass and screwing it’s lid off.
The core phase represents tilting the bottle and pouring oil
into the glass. Screwing the lid back on, moving the bottle
and placing it on the work surface would be annotated as the
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Figure 2. Activity Diagram: Task orderings were sampled from this
model and given to participants in order to increase variability of task
orderings in the dataset.

post-phase of theadd oil activity. The annotated temporal
extent of a phase of an activity is delimited by distinct events
at the start and end of these phases. The start of the pre-phase
of theadd oil activity, for example, would be marked as the
frame in which the oil bottle was first touched as opposed to
the frame in which the hand reaches out in order to grab the
bottle. Annotations are therefore unambiguous and repeat-
able.

Use Cases
This dataset can be split in various ways into training and
test data in order to investigate different generalizationprob-
lems. Cross-subject generalization is a common problem in-
vestigated by the activity recognition community, where all
data of any subject is used either for training or for testing.
This is a hard problem in the context of food preparation due
to strong personal preferences regarding how activities are
executed (idiosyncrasies). Intra-subject generalization is a
comparably easier problem given the same amount of train-
ing data. Here, only very limited data of a single subject is
available. Nevertheless it would be interesting to evaluate
intra-subject generalization on this dataset as having very
limited training data of the target subject might be a good
representation of real-world conditions for, e.g., a situated
prompting system.

While inferring the full specification of an activity (verb,
phase and objects involved) is our long-term objective, we
recognize that current activity recognition methods are not
powerful enough to do this. In order to gradually approach
this goal, however, the available detailed annotations may

be used to automatically formulate easier classification prob-
lems. For example, parts of the description such as the ingre-
dients or the activity-phase may be ignored, mapping distinct
annotations onto the same label. One such simplified recog-
nition problem is discussed in the following Section.

MULTI-MODAL ACTIVITY RECOGNITION

Task Description and Evaluation Protocol
The choice of ontology by which activities are categorized
can substantially influence recognition performance. Con-
sider, for example, the two activities mixing the salad dress-
ing and mixing the completed salad. They may be regarded
as belonging to the same general activity of mixing ingre-
dients. The exhibited motion pattern when performing these
activities is similar. Based on low-level motion features alone
it would therefore be difficult to differentiate between mix-
ing the dressing and mixing the completed salad, and com-
bining these activities in the general activitymixing ingre-
dients simplifies the recognition task. However, the kitchen
utensils used while performing these two activities are differ-
ent. While participants tend to move the dressing glass and
the small spoon when mixing the dressing, the large spoon
and the salad bowl are moved when the final salad is being
mixed. As the sets of utensils moved in these two activities
are mutually exclusive, the task of differentiating these ac-
tivities based on object use is comparably easy. Therefore,
assigning a common class label to these activities renders the
recognition task more difficult. With these considerationsin
mind we investigate the problem of recognizing the follow-
ing activity classes based on various combinations of feature
types: add oil, give pepper, mix dressing, mix ingredients,
cut into pieces, place into bowl, peel cucumber, serve salad,
dress salad andNULL, whereNULL indicates that none of
the activities of interest is happening. This is of course only
one of many recognition problems that could be investigated
using this dataset.

For activity recognition we assume that no two activities oc-
cur simultaneously. In rare cases the annotated temporal in-
tervals of subsequent activities overlap. As the frames in
which this situation occurs only account for 0.09% of the
data, we skip these samples for both training and testing,
rendering the recognition task a pure classification problem.

In order to test cross-subject generalization, we evaluateal-
gorithms by 5-fold cross-validation. Although 10-folds are
often used (as argued in [12]), we chose 5-fold cross-valida-
tion to keep the computational cost manageable. We split
the dataset into 5 partitions each containing both sessionsof
5 subjects. Each of these partitions is used for testing an al-
gorithm that has been trained on the remaining 20 subjects.
Model selection for each tested algorithm is performed via
5-fold cross-validation on each training set. The trainingset
for each test partition is split into 5 partitions containing both
sessions of 4 subjects. Each of these partitions is used for
validating a model that has been trained on the remaining 16
subjects.

For comparatively evaluating different algorithms, recogni-
tion performance is measured as mean precision and mean
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recall. Mean precision and mean recall are calculated across
five cross-validation partitions for each activity class and
the arithmetic mean across all activity classes is taken to
produce the final result. Given the number of true positive
(TP), false positive (FP) and false negative (FN) classifica-
tion results, precision is defined asTP

TP+FP
and recall is de-

fined as TP
TP+FN

. Mean precision and recall over all classes
and cross-validation partitions are computed by first sum-
ming TP, FP and FN over all partitions for each class sep-
arately, then applying the formulas for precision and recall
on the sums and finally estimating the arithmetic mean over
all classes, as argued in [6]. The arithmetic mean over all
classes assigns equal importance to all classes regardlessof
their prevalence in the test data.

Features
We consider features extracted from accelerometer data (Ob-
ject Use andAcceleration Statistics) and features constructed
by visually localizing accelerometers (Device Locations and
Visual Displacement Statistics).

Accelerometer Localization
In order to use visual accelerometer localization for activity
recognition we adapt the approach proposed in [24]. Ac-
celerometers are localized in the visual field of a camera
by matching a device’s measured accelerationAdev : (a

(0)
dev,

. . . , a
(t)
dev) to the accelerationAs

vis : (a
(0)
s , . . . , a

(t)
s ) esti-

mated along visual point trajectoriesPs : ((x
(0)
s , y

(0)
s ), . . . ,

(x
(t)
s , y

(t)
s )). The location in the most recent frame of the vi-

sual trajectoryPŝ with strongest similarity is taken to be the
device’s location estimate:(x̂(t)

dev, ŷ
(t)
dev) = (x

(t)
ŝ , y

(t)
ŝ ). The

similarity betweenAdev andAs
vis is estimated incrementally

with a temporal decayα:

St(Adev,A
s
vis) =1

[

|a(t)s | ≥ Tloc ∧ |a
(t)
dev| ≥ Tloc

]

+ α · St−1(Adev,A
s
vis) (1)

This method does not require any learning and provides good
localization results for devices that exhibit strong accelera-
tion. ForSt to differ significantly fromSt−1 the device ac-
celeration|a(t)dev| has to exceedTloc. Therefore, the location

estimates(x̂(t)
dev, ŷ

(t)
dev) drifted away from the target when the

device measured no acceleration and the point trajectoryPŝ

changed its location. This becomes problematic when the
device does not move andPŝ tracks the motion of other ob-
jects in the scene.

The modification we propose here detects when a device is
stationary and temporarily stores the locations(x

(t)
s , y

(t)
s )

of all point trajectoriesPs together with the similarity val-
uesSt(Adev,A

s
vis). When the device is detected to move

again the similarity of a point trajectory is initialized with
the valueSt(Adev,A

s
vis) corresponding to the closest loca-

tion (x
(t)
s , y

(t)
s ) in the current frame.

Object Use
We assume that an object is in use if and only if it is mov-
ing. The wireless accelerometers used in our experiments
stop data transmission if the measured magnitude of accel-
eration does not exceed a threshold over a fixed number of
consecutive samplesN∗. Although this method only de-
tects constant velocity, it is unlikely that a human performs
a movement with constant velocity over an extended period
of time. We therefore consider an object to be not moving
if the accelerometer attached to it does not send any data.
With this approachnot moving is detected with a delay of
N∗ − 1 samples. Using a generalized formulation we can
estimate whether an object is moving with shorter delay. Let
A : (a(0), . . . , a(t)) be a sequence of accelerometer data up
to time t, N ′ the number of considered consecutive accel-
eration samples,g the gravitational acceleration andTmov a
threshold. Whether an accelerometer is moving at timet can
then be formally expressed as

moving(A, t) = ¬





t
∧

j=t−N ′+1

(|a(j)| − |g| ≤ Tmov)





(2)

N ′ = N∗ in the experiments reported here. Preliminary
evaluation results have shown that recognition performance
does not change significantly withN ′ 6= N∗.

Acceleration Statistics
Following the approach of Pham et al. [18] who experi-
mented with various classifiers in the context of recognizing
food preparation actions involving four utensils, we extract
the statistical features mean, energy, standard deviationand
entropy for each of the three axes and estimate pitch and roll
from four temporal subwindows. These subwindows have
a length of 32 samples each and are evenly spaced within
the temporal window. Pitch and roll encode the device’s ori-
entation relative to the direction of gravity and can be esti-
mated from accelerometer data because the data represents
proper acceleration (relative to free fall). The yaw angle can-
not be recovered from accelerometer data because the yaw
angle describes rotation around the axis that is aligned with
the direction of gravity. The concatenation of these features
results in a vector of 20 dimensions for each device. We
concatenate the feature vectors extracted from all devices,
resulting in a feature vector with 140 dimensions.

Device Locations
Assuming that accelerometers are attached to objects that
participate in an activity of interest their visual trajectories
are likely to be distinctive for the activity that is performed
with those objects. Therefore, we propose to visually lo-
calize accelerometers and use accelerometer locations and
trajectories as features for activity recognition. In contrast
to visual object tracking which is an extremely challeng-
ing problem in itself, localizing accelerometers attachedto
objects enables object tracking without making assumptions
about an object’s appearance. Using the accelerometer lo-
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calization algorithm, we construct a feature vector for each
video frame containing the estimated 2D location of each
device in camera coordinates.

Visual Displacement Statistics
We estimate statistical features (mean, energy, standard de-
viation, entropy) for the visual displacement components,
(∆x,∆y), of the point trajectory that is matched to an ac-
celerometer using the accelerometer localization algorithm.
These features, extracted from a fixed temporal window of
16 video frames along all accelerometer trajectories, are con-
catenated to form a single feature vector characterising the
visual motion of all devices. The resulting feature vector has
56 dimensions (8 features per device for 7 devices).

Classification
In this paper we consider the naive Bayes and the random
decision forest classifiers. Naive Bayes is used to generate
baseline recognition results to which more complicated clas-
sifiers can be compared. Random decision forests are non-
linear classifiers that naturally extend to multi-class classi-
fication and produce well calibrated posterior probabilities.
These characteristics make this classifier favorable compared
to the popular support vector machine (SVM) [3].

Naive Bayes Classifier
Naive Bayes assumes independence of the observationso :
(o1, . . . , oK)T conditioned on the class. MAP classification
selects the class that maximizes the posterior:

P (c|o) ∝ P (o|c)P (c) ≈ P (c)

K
∏

k=1

P (ok|c) (3)

This assumption is often poor, e.g., a glass and a spoon are
likely to move simultaneously when mixing a salad dress-
ing. Probabilities are modeled with binomial distributions
for Object Use and with Gaussian distributions for all other
features and feature combinations.

Random Decision Forest
A random forest is an ensemble of random decision trees,
where each tree is trained in isolation [3]. Each internal node
of a decision tree represents a weak classifier in the form of a
binary decision function. Starting at the root node, a random
subset of the set of weak learners is selected. This random
subset of features is evaluated in combination with a small
number of randomly selected thresholds against the informa-
tion gain criterion. The weak classifier with highest informa-
tion gain on the training data for this node is selected. The
weak classifier divides the training data into two partitions.
The left and right child node are subsequently trained based
on their respective training data partitions. Leaf nodes store
the distribution of training samples arriving in a given node
over classes. We use axis-aligned weak classifiers, which
simply compare the value of a single dimension of a feature
vector with a threshold. Using more complex classifiers in
the tree nodes is associated with a significantly higher com-
putational cost for training. Preliminary evaluation results

showed that more complex classifiers did not improve recog-
nition performance. In order to deal with unbalanced train-
ing data, the contribution of samples from different classes
to (i) information gain and (ii) class distributions in the leaf
nodes are weighted differently. The weight of a sample from
classc is set to be inversely proportional to the number of
samplesnc from that class in the training set:

wc = maxu(nu)/nc (4)

In the limit of an infinite number of training samples this ap-
proach is equal to stratification, i.e., selecting an equal num-
ber of samples per class.

In the inference stage a feature vector traverses all trees start-
ing at the root node, descending to the next node depending
on the evaluation of the weak classifiers in the current node
on the test sample. The class distributions of the destination
leaf nodes are summed and normalized yielding a posterior
distribution over activity classes given the test sample.

The meta-parameters of a random forest specifying (i) the
number of decision trees, (ii) the maximum depth of each
tree, (iii) the number of randomly selected features tested
in each node, and (iv) the number of thresholds tested per
feature need to be set prior to forest training. We attempt
to find good values for these parameters through model se-
lection. Automatic model selection involves choosing the
model that minimizes a loss-function. As our random forests
select features for each node to maximize information gain,
the cross-entropy error is used as the loss-function for model
comparison. The cross-entropy error for a single datapoint
is defined as

H(p, q) = −
∑

c

p(c)log2(q(c)) = −log2(p̂(cgt|o)), (5)

wherep(c) is the ground-truth class distribution (delta-func-
tion with peak at true class labelcgt) andq(c) is the class
posteriorp̂(c|o) estimated by the recognition algorithm. In
this special case the sum only contains a single non-zero el-
ement, which is the log of the estimated probability for the
ground-truth class. We compute the per class cross-entropy
error and sum over all classes in order to obtain a single per-
formance measure given in (6).

Hm =
∑

c

1

nc

∑

i:pi(c)=1

H(pi, qi) (6)

Since cross-entropy is estimated from cross-validation itcan
be regarded as a random variable with fluctuation around
the mean. Treating model-selection as a regression problem
with cross-entropy as its error function, we handle the bias-
variance trade-off by selecting the model that minimizes
mean(Hm)2 + variance(Hm).
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Fusion Methods
In addition to combining information from accelerometers
and video data through accelerometer localization to extract
Device Locations andVisual Displacement Statistics, we con-
sider fusion at feature level by concatenating feature vec-
tors (early fusion) and fusion at classifier level (late fusion).
For classifier fusion we tried the sum-rule and the product-
rule [11] as well as Random Decision Forests as a non-linear
combination method.

Evaluation
Following the quantitative evaluation in Pham et al. [18] we
use a temporal window of 256 accelerometer samples for
estimatingAcceleration Statistics. ForVisual Displacement
Statistics a temporal window of 16 video frames was used, a
trajectory length commonly used for visual action recogni-
tion [26].

For random forests model selection we searched for a good
model with 20 trees, the values{8, 10, 12} for the maximum
number of tree levels,{ 1

3d,
2
3d, d} for the number of weak

classifiers tested per node (whered is the number of feature
dimensions) and 10 thresholds per weak classifier.

Results
The naive Bayes classifier did not perform better than chance
on features other thanObject Use andDevice Locations. Us-
ing Object Use gave a respectable recognition performance
of 0.42±0.01 precision and0.48±0.02 recall, intervals rep-
resenting one standard deviation. This result indicates that
the involvement of objects in an activity regardless of their
interactions is already a strong cue for recognizing food pre-
paration activities. Scaling a recognition system beyond a
single recipe, however, would drastically increase the num-
ber of possible activities involving any single object, render-
ing this type of feature less informative. WithDevice Loca-
tions the Naive Bayes classifier achieved0.14± 0.02 preci-
sion at0.14±0.01 recall. The low performance may indicate
that the naive Bayes assumption is particularly poor for this
type of feature or that device locations are not discriminative
for distinguishing food preparation activities.

The recognition results obtained with various features, fu-
sion methods and Random Forest classifiers are shown in
Table 2. The top section shows the recognition performance
for individual feature types, including two types that relyon
multi-modal fusion using accelerometer localization. The
middle section (Combination: Early) shows recognition per-
formance with fusion at feature level, i.e. concatenation of
feature vectors. The bottom section shows recognition per-
formance achieved through combining posterior class distri-
butions obtained by classification based on individual fea-
ture types.

Applying a random forest classifier toObject Use features
did not improve recognition performance over the baseline
results obtained with the naive Bayesian model (not shown
in the Table). This indicates that the naive Bayes assumption
is good for this type of feature. Recognition accuracy for
Device Locations increased compared to naive Bayes classi-

Feature Type Comb. Precision Recall

OU - 0.41± 0.03 0.48± 0.02
DL AL 0.26± 0.02 0.22± 0.03
VS AL 0.52± 0.05 0.49± 0.04
AS - 0.62± 0.05 0.64± 0.04

OU + DL Early 0.51± 0.03 0.51± 0.02
OU + VS Early 0.54± 0.02 0.53± 0.04
OU + AS Early 0.63± 0.05 0.66± 0.03
DL + VS Early 0.57± 0.04 0.54± 0.03
DL + AS Early 0.61± 0.05 0.64± 0.03
AS + VS Early 0.67± 0.05 0.67± 0.03
OU + AS + VS Early 0.67± 0.05 0.68± 0.03

OU + DL Sum 0.43± 0.02 0.49± 0.03
Product 0.45± 0.02 0.50± 0.02

OU + VS Sum 0.51± 0.03 0.53± 0.03
Product 0.52± 0.03 0.53± 0.03

OU + AS Sum 0.43± 0.07 0.49± 0.03
Product 0.44± 0.02 0.50± 0.03

DL + VS Sum 0.49± 0.05 0.51± 0.03
Product 0.52± 0.04 0.51± 0.04

DL + AS Sum 0.59± 0.05 0.64± 0.03
Product 0.61± 0.05 0.64± 0.04

AS + VS Sum 0.63± 0.04 0.67± 0.03
Product 0.65± 0.03 0.67± 0.03

OU + AS + VS Sum 0.62± 0.04 0.65± 0.02
Product 0.64± 0.03 0.66± 0.03
RF 0.65± 0.05 0.67± 0.03

Table 2. Activity recognition performance (mean precisionand mean
recall) achieved with various features, fusion methods andRandom
Forest classifiers. Intervals represent± one standard deviation. De-
vice Locations (DL) and Visual Displacement Statistics (VS) use multi-
modal fusion by accelerometer localization. Early fusion refers to con-
catenating feature vectors. Sum, product and RF (random forest) in-
dicate classifier combinations by aggregating class posterior distribu-
tions. AL: accelerometer localization, AS: Acceleration Statistics, DL:
Device Locations, OU: Object Use, RF: Random Forest, VS: Visual
Displacement Statistics.

fication but was still lowest among all configurations tested
with random forest classifiers. This illustrates that objects
are positioned quite freely on the work surface and that their
locations do not provide strong cues for activity recognition
even in this dataset where all sequences were recorded in
a single (confined) kitchen setup involving the same uten-
sils. The performance usingAcceleration Statistics of 0.62
precision and0.64 recall was the best among all individual
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Figure 3. Confusion Matrix for the method that achieved highest ac-
tivity recognition accuracy among all configurations considered in Ta-
ble 2. A random forest classifier was trained on concatenatedObject
Use, Acceleration Statistics and Visual Displacement Statistics features
(early fusion). Rows and columns represent ground-truth and pre-
dicted class labels, respectively. Numbers represent frequencies in per-
cent and cell gray-levels linearly encode frequencies from0% (black)
to 100% (white).

feature types. This result confirms that acceleromter-based
activity recognition can yield good performance using fea-
tures that are fast to extract from the temporal domain and
require no learning as proposed in [19]. The lower perfor-
mance ofVisual Displacement Statistics compared toAccel-
eration Statistics can be attributed to the shorter temporal
window used for feature extraction (0.53s compared to 5.12s
for Acceleration Statistics) and imperfect localization.

The combination of different features prior to classification
(Combination: Early) in Table 2 consistently improved recog-
nition performance compared to the individual feature types,
and the observed performance increase was statistically sig-
nificant in all cases except for the combination ofDevice
Locations with Acceleration Statistics. These observations
strongly support the hypothesis that robust activity recogni-
tion benefits from integrating multiple types of cues. Com-
bining classifier outputs using the sum-rule or the product-
rule only showed minor improvement compared to the indi-
vidual feature types. Note, however, that inference in deci-
sion forests trained on combined features is faster by a factor
K than combining classifier outputs ofK feature types.

We also experimented with a non-linear combination of clas-
sifier outputs using random forests. Due to the computation-
ally demanding model selection, we only ran these exper-
iments on the combination of features that achieved high-
est recognition accuracy with early fusion. Here, recogni-
tion accuracy is not significantly different from that obtained
with early fusion of the same features.

The confusion matrix of test results obtained with a ran-
dom forest classifier trained on concatenatedObject Use, Ac-
celeration Statistics andVisual Displacement Statistics fea-
tures is illustrated in Figure 3. This configuration achieved
highest activity recognition accuracy among all configura-
tions considered in Table 2. For almost all activities recall

was above 50%, except for theNULL-activity (42%) and
mix ingredients (49%). Considering the high intra-class
variability and the fact that no temporal activity modelling
was used these results are very promising. As the pre- and
post-phases of activities involve re-organizing objects on the
work surface, there is significant confusion betweenNULL
and all other activities. The large spoon was often used
to carry out themix ingredients andserve salad activ-
ities. As the way the large spoon was moved during these
activities was also very similar they were frequently con-
fused. The noticeable confusion betweencut into pieces
andplace into bowl may be due to the knife often being
used to scrape chopped ingredients off the chopping board
into the bowl. Stronger motion features or a representation
of spatial relations between objects might help distinguish
these activities.

DISCUSSION & CONCLUSION
In this paper we introduced a challenging dataset of food
preparation activities with a novel combination of video and
accelerometers attached to kitchen objects. The dataset con-
tains complex interactions of multiple objects and may be
used to investigate a wide range of recognition problems.

We proposed a new method for combining video and ac-
celerometer data for activity recognition through accelerom-
eter localization. This approach and other methods for fus-
ing these modalities were comparatively evaluated on the
new dataset. Features encoding object use showed consider-
able discriminative power. Similar information might have
been obtained using RFID tags as an alternative to acceler-
ometers. However, with a recognition accuracy below 50%
it is clearly insufficient to solely rely on this type of fea-
ture. Motion features extracted from accelerometer data pro-
vided the strongest cues among individual feature types in-
vestigated. However, by fusing data from different sensor
types via accelerometer localization and by combining fea-
tures prior to classification we were able to significantly im-
prove recognition performance. These results highlight the
potential for multi-modal recognition approaches. Note that
the choice of activities we used for evaluation here was de-
liberately made to exclude important factors such as the ma-
nipulated ingredients. If we had set out the task to differen-
tiate between different ingredients being cut into pieces or
placed into the bowl, additional (visual) features would be
necessary to robustly recognize such activities. We expect
that the integration of visual information will be even more
beneficial for reasoning about interactions between multiple
entities such asmoving the chopped tomato from the chop-
ping board into the bowl.
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