Combining Embedded Accelerometers with Computer
Vision for Recognizing Food Preparation Activities

Sebastian Stein and Stephen J. McKenna
CVIP, School of Computing
University of Dundee

~ Dundee, United Kingdom
{sstein,stephe@computing.dundee.ac.uk

ABSTRACT

This paper introduces a publicly available dataset of com-
plex activities that involve manipulative gestures. Theadat
captures people preparing mixed salads and contains more
than 4.5 hours of accelerometer and RGB-D video data, de-
tailed annotations, and an evaluation protocol for compari
son of activity recognition algorithms. Providing baselin
results for one possible activity recognition task, this pa
per further investigates modality fusion methods at défer
stages of the recognition pipeline: (i) prior to featureragt

tion through accelerometer localization, (ii) at featureel

via feature concatenation, and (iii) at classification lde
combining classifier outputs. Empirical evaluation shows
that fusing information captured by these sensor types can
considerably improve recognition performance. o

Author Keywords

Activity recognition, sensor fusion, accelerometers, eom Figure 1. Snapshot from the datase't. Data frqm an RGB-D camesrand
puter vision, multi-modal dataset from accelerometers attached to kitchen objects were recded while

25 people prepared two mixed salads each. Activities were kpinto
preparation, core and post-phase, and these phases were anated as
ACM Classification Keywords temporal intervals.

I.5.5 Pattern Recognition: Applications; |.4.8 Scene Amnal
sis: Sensor Fusion; 1.2.10 Vision and Scene Understanding:

Video Analysis; K.4.2 Social Issues: Assistive Technodsgi ~ ON€ potential application of recognition methods evakiiate
for Persons With Disabilities on this dataset is cognitive situational support. Ubiqusto

computing has great potential in addressing the challenges
of an aging population by providing automatic situated sup-
port for people with cognitive impairments! [7}, [8,120]. En-
abling people with, e.g., dementia to stay longer in their
homes and to perform activities of daily living (ADL) inde-
pendently of a social carer arguably increases their pexdei
INTRODUCTION . _quality of life [27] and significantly reduces the social tos
We aim to stimulate research in the area of complex activ- 5sgqciated with cognitive impairments. Food preparagon i
ities tha@ involve manlpu_latlve gestures, as occurring fre one of the most essential ADL tasks. Automatically recog-
quently in food preparation, manufacturing and assembly izing food preparation activities is extremely challemyi
tasks. Therefore, we provide a carefully designed datasetior yarious reasons. Usually a recipe involves a large num-
taking a novel approach to multi-modal sensing: video data per of complex interactions between hands, utensils, ingre
and data from accelerometers attached to objects were récorgients, etc. in a constrained but non-unique order and with
ded simultaneously (see Figide 1). personal variations. In a situational support system astio
must be recognized online, imposing strong constraints on
computational cost and requiring temporal segmentation of
activities, a hard problem in itself. Modelling and traakin
activities at a detailed level and issuing sensible prorpts
the user are further open research problems. Despite some
characteristics that are unique to processing food, many of
the challenges faced in this context re-occur in the context

To appear in the Proceedings of the 2013 ACM Internationiait Zonfer- of tracking and guiding a person through other complex pro-
ence on Pervasive and Ubiquitous Computing (UbiComp 2013).
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cesses such as manufacturing and assembly tasks. The StudRELATED WORK
of recognizing food preparation activities has therefargen
potential to push the boundaries of automatic activity geco
nition in general.

Existing Datasets

Several public datasets for benchmarking activity recogni
tion algorithms exist in the fields of wearable computing,[10

[18,[21,29] and computer vision [14,]115,] 17] 22| [23,[25, 4].
“One reason for the multiplicity of datasets is that the terms
activity and recognition are used for varied concepts. In

While RFID and embedded accelerometers are inconspicu
ous and cost-effective they do not provide sufficient data to

reason about complex_ interactiqns be;tween multiple ta.ggedmany casesecognition means offline classification, where
objects and about their interaction with untaggable object ¢, from an entire video clip is used to determine it's activ

such as food. Computer vision may be used to establish spay,, | KTH YouT: 41 Holl

tial relationships and enable reasoning about the interact :?r/u;: SSSA(S'E'])_ I%Bchh e?lsj lﬁg\?v:g/e]r,eco%nﬁvgr?g%ﬂ
_betweend V'S.Hal entities, E”t recognlzlmg_ and tracking ob- jonally includes identifying the temporal (and spatia) e
jects under illumination changes, occlusion, intra-C&l8s oy of an action, also referred to as activity detection or
pearance variations and object deformations are chaigngi spotting (e.g., Darmstadt Daily Routinés [10], AmbientK-
problems. The combination of complementary information itchen [18] TUM Kitchen[25] CMU-MACC[BL], Opportu-
from multiple sensor types helps to address some of thesenity[lﬂ] IéPR—KSCGIﬂand h/iPII—CookingﬂZE]j. Datasets
ISSUES. supporting activity spotting have the benefit that they can

In the ubiquitous computing research community. video is also be used purely for classification. The dataset predente
q puting Y, in this paper includes continuous sequences of complex in-

mainly recorded to enable manual annotation of abeal teractions involving multiple objects that can be used for

sensor data from, €.g., RFID readers, accelerometers and gy |, sjfication, activity spotting and progress tracking.
roscopes. Often video is not recognized as a valid source of

information due to the widespread belief that cameras are
too intrusive and would not be acceptable. Over the past few

years the number of cameras per household has grown exj; ; A
ponentially through the emergence of smart-phones, &gblet ticulated full body motions'123), fine-grained hand gesture

] . . . : [18], or complex inter-actions of multiple objects [10]. Ac
and video-based input devices such as Kinect. While Usersy;, s e aiso described with varying level of detail and may
may object to the idea of another person watching them via .., yain only a verb (e.g., boxing, waving, cutting, adding)
CCT\V-like installations in their homes they are often ac- oy aqditionally include the objects interacted withg(e.
cepting of visual sensors as part of a closed system that €n;cying up cafeteria food) [10]. Furthermore, the total set
ables desirable services. In the computer vision community ¢ o ivities considered in a dataset may be very broad, (e.g.
some multi-modal activity recognition datasets have beenr  _ ions'in movies[15] or web video cligs [14]) or scenario-
leased, including synchronized video, RFID, audio and IMU specific (e.g., car assembly-line checkpdini [29] or focet pr

data. Interestingly, in all of these datasets acceleramete ; 2 ; ; ; P,
' o aration[18]). This choice affects inter-class varidiiliA
and gyroscopes have been aftached to the subject’s bodY, esification problem with high inter-class variabilityica

which is practically inconvenientin the contextof siteatal | intra_class variability is easier than one with low inte
support systems. In pervasive intelligent environments it o« variability and high intra-class variability. Ourtatset
therefore common practice to embed sensors in objects in-¢qaing activities with low inter-class variability anh
volved in an interaction instead[2]. intra-class variability as well as detailed activity aratains

This paper introduces a dataset including video data andmg:(l)ubd(:\r,]wg)the|dent|t|es of objects involved (e.glacetomato

The term activity is used even more broadly and may refer
to atomic gestures (e.g., grasp)|[21], simple, repetitare,

data from accelerometers attached to objects. Design deci-
sions, the experimental setup, annotation and evaluat@n p
tocols are discussed in detail. We also provide benchmark
results for one particular activity recognition problemtbis
dataset. We propose to combine video and acceleromete
data through accelerometer localization and show that fus-
ing features at early stages of the recognition pipelineisig
icantly increases activity recognition performance. Imsu
mary, the contributions of this paper are:

Recently several datasets of kitchen activities have been r
leased that combine visual and non-visual sensor types. The
CMU-MMAC [4] contains data from multiple cameras and
rbody worn IMUs, BodyMedia and an eWatch. The cam-
eras are placed to overlook large parts of the kitchen as in
a surveillance scenario. Participants wear a suit with IMUs
placed at joint locations and a helmet with an attached cam-
era. Such a sensor placement is arguably infeasible for prac
tical assisted living solutions as the camera positiorsrapr
trusive and wearing the suit is strongly disruptive. The TUM
Kitchen datase{[25] contains video and RFID data of peo-
ple dressing a table. Cameras were placed similarly to the
« A novel method for fusing accelerometers and computer CMU-MMAC dataset and RFID sensors were embedded at

vision for activity recognition. three locations in the kltche_n. A.Ithough participants dod n .

have to wear a sensor-suit in this scenario, the camera posi-

o Experimental evaluation of the proposed method and com-tioning was intrusive. The activities captured in this data

parison of various fusion method; on the new dataset, in-1 p: /| WA, nur ase. m i s. nagoya- u. ac. j p/

cluding a protocol for benchmarking. KSCGR/ i ndex. ht nl

e A multi-modal activity recognition dataset including more
than 4.5 hours of annotated accelerometer and RGB-D
video data, which is the first of its type.



http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/index.html
http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/index.html

did not involve objects that are untaggable with RFID. One _Activity #Inst. | #Frames| Core
major challenge for recognizing food preparation tasks is, add oil 55 27813 8161
however, that sensors cannot be attached to food. The use of add vinegar 54| 23657| 6572
RFID readers in the kitchen is also very limited due to the add salt 53 11369| 4995
fact that there is no small number of distinct strategicfoca  add pepper 55| 12912| 6123
tions that would suffice to be equipped with RFID readers. ~ mix dressing 61 19492| 14295
peel cucumber 53 62141| 38613

Pham et al.[[18] replaced the handles of kitchen utensils wit ~ cut cucumber 59 49853| 38787
Wii-controllers capturing tri-axial accelerometer datédle cut cheese 56 50680| 26001
extended their approach by attaching accelerometers to var cut lettuce 61 53313| 28847
ious kitchen objects and by combining these sensors with an cut tomato 63 68347 50768
RGB-D camera facing the work-surface. Such a sensor setup place cucumber into bowl 59 16800 9071
is affordable and feasible to integrate into a home kitchen.  place cheese into bowl 53 12753| 6305
place lettuce into bowl 61 15159| 7856

o N place tomato into bowl 62 13547| 6418
Activity Recognition mix ingredients 64 22917| 16050
In both computer vision and ubiquitous computing commu-  serve salad onto plate 53 35230| 19110
nities, researchers have been shifting focus from recegniz  add dressing 44 22428| 12092
ing simpleactions that correspond to distinct motion pat- ~Total 966 | 518411| 300064

terns to assessing the quality of execution (e.g., skil) an
recognizing complex, broadly defined activities. The dettas Table 1. Dataset size in terms of activity instances and vigeframe
provided with this paper facilitates research in the latier ~ counts.

rection in that it comprises annotated sequences of complex

multi-step activities. Additionally, important factorsrfac-
tivity recognition to find its way into real world applicatie
are recognition at low computational cost, recognitionrof o
going activities and activity prediction.

these features are expected to be similarly valid for other
features.

Combining various feature types and classification results
has beenwidely studied. Prominent approaches include mul-
tiple kernel learning as a feature combination method fer di
criminative classification [16], and the sum-rule and picielu
rule for classifier combination[11]. Wu et al._[28] combine
visual features with data from an RFID reader attached to
a person’s wrist in a dynamic Bayesian network for distin-
guishing between high-level activities in the kitchen. &td
and IMU data from mobile phones are combined_in [9] for
indoor localization. Combining embedded accelerometers
and video has huge potential for activity recognition by-pro
viding complementary information. The localization of ac-
celerometers in the visual field as proposedin [24] is one
method for efficiently fusing these modalities. In this pa-
per we provide first empirical evidence using this method to
support recognition.

Activity recognition has a long history in computer vision
research, recently reviewed by Aggarwal and Ryéo [1]. Cur-
rently the most prominent approaches extract local appear-
ance and motion descriptors in the neighborhood of spatio-
temporal interest point§ [13] and point trajectories [28} f
lowed by discriminative classification via support vect@-m
chines. While these methods show good performance on
after-the-fact (offline) classification of articulatedIfbbdy
motion and actions in movies, Rohrbach et al.1[22] show
empirically that this approach is not well suited for recog-
nizing food preparation activities. In addition to yielditow
recognition performance, extracting local descriptoosiad
densely sampled locations as proposed_in [26] is computa-
tionally demanding in real-time, e.g. at 30 Hz. It is therefo
crucial to investigate methods for activity recognitiomitth
are faster and better suited to recognizing food preparatio

activities for delivering situated guiding prompts. FOOD PREPARATION DATASET: 50 SALADS

We collected a datagetomprising annotated video and ac-

For an overview of features proposed for accelerometezebas Célerometer data of people preparing a mixed salad. We
activity recognition we refer the interested readerto tre s first give a description of the experimental setup, partici-
vey by Figo et al.[[5]. Pham et al. [18] developed a method pants, sensor synch.ronlzat[on and activity annotatiooreef

for recognizing food preparation actions such as chopping, We motivate the design decisions.

peeling, stirring and scooping using accelerometer data fr

accelerometers embedded in knifes and spoons. They exDataset Details

tracted statistical features (mean, energy, variance and e An RGB-D camera (Kinect) was mounted on the wall to
tropy) in the time domain and computed pitch and roll for have atop-down view onto the work surface. Accelerometers
encoding device orientation. Recently, Plotz etlal] [1@}-p  were embedded in the handles of a knife, a mixing spoon and
posed feature learning for activity recognition from aecel ~ a peeler. Further accelerometers were attached to a small
ometers with deep belief networks. As feature learning is spoon, a glass, an oil bottle, and a pepper dispenser. We re-
costly and Pham et al._[18] reported good performance with corded visually aligned RGB and depth data with 640x480
features that are very fast to compute, we use their set of 2 <ot UR(:

features for our analysis. The conclusions we draw regard-pt t p: // cvi p. conput i ng. dundee. ac. uk/ dat aset s/

ing the benefit of combining different sensor types based onf oodpr epar at i on/ 50sal ads/
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pixels resolution at 30Hz. We used Axivity WAX3 wireless knowledge of being recorded. Therefore, we expect subjects
accelerometers which are equipped with a rechargeable batio behave more naturally in the second session as they had
tery, microprocessor, 3-axis accelerometer, IEEE 802:15. time to get used to the laboratory kitchen in the first run.-Sec
2006 radio and a micro-USB port for recharging and con- ondly, recording subjects multiple times enables the staidy
figuration. These devices transmit acceleration data azr50H idiosyncrasies and the comparison of different learnireg sc
with 16-bits per axis resolution. All samples are timestathp  narios, e.g., same subject included in training data agains
upon arrival at the server. We chose not to use gyroscopescross-subject generalization.

as they significantly reduce battery life and their data ex-

hibit strong artifacts resulting from magnetic interferen 551 order Sampling

with kitchen equipment. Figufd 1 shows an example snap-\yhen observing a person performing multi-step activities
shot from the dataset. interacting with a number of different objects, differemt o
derings in which these steps are carried out induce strong

We recruited 27 subjects of varied age, ethnic background, aiation on the configuration and appearance of objects in

and gooking ex.perience. All subjects prepa}red amixed Saladthe scene. In the context of preparing a mixed salad, for ex-
two times totalling 54 sequences. Two subjects had to be €X-ample, the scene looks different after preparing the d;rgssi
cluded from the final dataset due to data loss. Preparing thejenending on whether the ingredients of the salad have been
mixed salad involved preparing a dressing with salt, p&pper ¢t anq mixed already. In order to build robust activity mod-
olive oil and balsamic vinegar, cutting ingredients (Cueum — g|q for recognition it is convenient to have a balanced datas
ber, tomato, feta cheese and lettuce) into pieces, mixing i 1yt contains roughly the same number of examples for all
gredients, adding the drt_es_smg to the sa_lad and SErving thqikely task-orderings. In practice it is costly to acquime-a
salad onto a plate. Participants were given a specific taskiated video data of a large number of people performing
order to follow in each run. They were also told to perform yhe same multi-step activity. Additionally, the task-cridgs
f"‘" activities within a fixed area on the work surface d,el'.m' the recorded sample population chooses naturally are poten
ited with tape, that marked the border of the camera’s field a1y highly imbalanced. Therefore, we propose to sample
of view. While no specific quantities for ingredients were ooy _orderings from a statistical activity model and ask pa
given, participants were asked to prepare a single porfion 0 yieinans to follow the steps of a recipe in orderings gener-
salad for one person. ated by the model. The statistical activity model for prepar
ing a mixed salad we used is illustrated in Figlite 2. The
model is based oActivity Diagrams used in computational
rocess specification and analysis. Every choice-nodesof th
iagram (represented by a horizontal bar with multiple out-
going arcs) is augmented by a probability distribution over
all options representing the probability of choosing egeh o
tion when that choice-node is reached. The probabilities in
Figure[2 are set to be uniform to ensure a balanced distribu-
tion of task-orderings.

For sensor synchronization we performed an action that si-
multaneously produces strong signals in the video and the
accelerometer data at the start and the end of all sequence
By establishing correspondences within these signals we es
timated two temporal offsets per sequence, one for the start
and one for the end. We used linear interpolation for tempo-
ral alignment within this interval.

The following activities were annotated in the form of atar
time and an end time corresponding to their temporal extent:
add oil, add vinegar, add salt, add pepper, mix dressing,

peel cucumber, cut cucumber, place cucumber into bowl, cut
cheese, place cheeseinto bowl, cut lettuce, placelettuce into
bowl, cut tomato, place tomato into bowl, mix ingredients,
serve salad onto plate andadd dressing. Each activity was
split into three phases which were annotated individually:
pre-, core- and post-phase. Each activity was associated
with one of three stages in the recipe which were also an-
notated:prepare dressing, cut and mix ingredientsandserve
salad. In total 966 activity instances were annotated. Anno-
tations spanned more than 500k video frames of which more
than 300k frames represented the core-phase of an activity
Tablel lists the numbers of instances and frames for all ac-
tivities.

Each participant was given a different ordering of tasks to
follow in each session. Surprisingly, few participants-pre
cisely followed the task ordering given to them althouglythe
were specifically instructed to do so. Our hypothesis is that
ordering tasks within a food preparation activity is strigng
governed by habit and personal reasoning. In cases where
subjects failed to correctly follow the instructions in thec-

ond session, this error may also be due to the subject fol-
lowing the memorized task ordering of the previous session.
Although this behavior was unintended, the availability of
the instructed task ordering together with the annotated ac
tivities may be used to experiment with detecting deviation
from the given task order.

Annotation

The pre- and post-phases of an activity include grabbing,
moving and placing utensils and ingredients. The core phase
Repeated Task Execution captures actions that are essential. Takidd oil as an ex-

We asked all participants to prepare a salad twice for two ample, the pre-phase might consist of grabbing the oiléottl
reasons. First, people exhibit varying degrees of distaien moving it over the dressing glass and screwing it’s lid off.
tion while preparing food if they are not within their usual The core phase represents tilting the bottle and pouring oil
kitchen setting and without access to their own utensils. A into the glass. Screwing the lid back on, moving the bottle
laboratory kitchen setup may add to that further through the and placing it on the work surface would be annotated as the

Motivation for Design Decisions



3 be used to automatically formulate easier classificatiobpr
lems. For example, parts of the description such as the-4ingre

0.5 J/ 0.5 dients or the activity-phase may be ignored, mapping distin
Cut and mix ingredients annotations onto the same label. One such simplified recog-
| prepare dressing | 3 nition problem is discussed in the following Section.

¢ 0.25 ¢ 0.25 0.25 0

.25
[c:ut cheesej E}eel and Dﬂ MULTI-MODAL ACTIVITY RECOGNITION
'”m\E'e“es °“°\L|‘/mber into pieces Task Description and Evaluation Protocol

The choice of ontology by which activities are categorized

can substantially influence recognition performance. Con-
sider, for example, the two activities mixing the salad dres
ing and mixing the completed salad. They may be regarded
as belonging to the same general activity of mixing ingre-
dients. The exhibited motion pattern when performing these
activities is similar. Based on low-level motion featureme
\|, it would therefore be difficult to differentiate between mix
d/ 05 \|/ 05 ing the dressing and mixing the completed salad, and com-
bining these activities in the general activityxing ingre-
(ine salad dressing over Sﬂ'ad) ( serve salad onto plate j dients simplifies the recognition task. However, the kitchen
J/ \|/ utensils used while performing these two activities artedif
ent. While participants tend to move the dressing glass and
g the small spoon when mixing the dressing, the large spoon
and the salad bowl are moved when the final salad is being
mixed. As the sets of utensils moved in these two activities

Figure 2. Activity Diagram: Task orderings were sampled from this are mutually exclusive, the task of differentiating these a
model and given to participants in order to increase variablity of task tivities based on object use is comparably easy. Therefore,
orderings in the dataset. assigning a common class label to these activities renlders t

recognition task more difficult. With these considerations
mind we investigate the problem of recognizing the follow-
ing activity classes based on various combinations of featu
Jypes: add_ail, give_pepper, mix_dressing, mix-ingredients,
cut_into_pieces, place_into_bowl, peel_cucumber, serve_salad,
dress_ salad andNULL, whereNULL indicates that none of
the activities of interest is happening. This is of coursky on
one of many recognition problems that could be investigated
using this dataset.

post-phase of thadd oil activity. The annotated temporal
extent of a phase of an activity is delimited by distinct egen
at the start and end of these phases. The start of the pre-pha
of theadd ail activity, for example, would be marked as the
frame in which the oil bottle was first touched as opposed to
the frame in which the hand reaches out in order to grab the
bottle. Annotations are therefore unambiguous and repeat-

able.

For activity recognition we assume that no two activities oc
Use Cases cur simultaneously. In rare cases the annotated temperal in
This dataset can be split in various ways into training and tervals of subsequent activities overlap. As the frames in
test data in order to investigate different generalizapiab- which this situation occurs only account for 0.09% of the

lems. Cross-subject generalization is a common problem in-data, we skip these samples for both training and testing,
vestigated by the activity recognition community, where al rendering the recognition task a pure classification proble
data of any subject is used either for training or for testing
This is a hard problem in the context of food preparation due In order to test cross-subject generalization, we evalalate
to strong personal preferences regarding how activities ar gorithms by 5-fold cross-validation. Although 10-fold®ar
executed (idiosyncrasies). Intra-subject generalinatoa often used (as argued in]12]), we chose 5-fold cross-valida
comparably easier problem given the same amount of train-tion to keep the computational cost manageable. We split
ing data. Here, only very limited data of a single subject is the dataset into 5 partitions each containing both sessibns
available. Nevertheless it would be interesting to evaluat 5 subjects. Each of these partitions is used for testing-an al
intra-subject generalization on this dataset as having ver gorithm that has been trained on the remaining 20 subjects.
limited training data of the target subject might be a good Model selection for each tested algorithm is performed via
representation of real-world conditions for, e.g., a s#da  5-fold cross-validation on each training set. The trairseg
prompting system. for each test partition is split into 5 partitions contaimhboth
sessions of 4 subjects. Each of these partitions is used for
While inferring the full specification of an activity (verb, validating a model that has been trained on the remaining 16
phase and objects involved) is our long-term objective, we subjects.
recognize that current activity recognition methods are no
powerful enough to do this. In order to gradually approach For comparatively evaluating different algorithms, regieg
this goal, however, the available detailed annotations maytion performance is measured as mean precision and mean



recall. Mean precision and mean recall are calculated acros Object Use

five cross-validation partitions for each activity classlan We assume that an object is in use if and only if it is mov-
the arithmetic mean across all activity classes is taken toing. The wireless accelerometers used in our experiments
produce the final result. Given the number of true positive stop data transmission if the measured magnitude of accel-
(TP), false positive (FP) and false negative (FN) classifica eration does not exceed a threshold over a fixed number of
tion results, precision is defined q@% andrecallis de-  consecutive sampled*. Although this method only de-

fined as-ZL—. Mean precision and recall over all classes ECtS constant velocity, it is unlikely that a human perferm
and cross-validation partitions are computed by first sum- & movement with constant velocity over an extended period
ming TP, FP and FN over all partitions for each class sep- Of ime. We therefore consider an object to be not moving
arately, then applying the formulas for precision and fecal if 'ghe a_ccelerometer attac_hed_ to it does not send any data.
on the sums and finally estimating the arithmetic mean over With this approactnot moving is detected with a delay of

all classes, as argued inl [6]. The arithmetic mean over all V" — 1 samples. Using a generalized formulation we can
classes assigns equal importance to all classes regaafiless estimate whether an object is moving with shorter delay. Let
their prevalence in the test data. A (a®, ... a) be a sequence of accelerometer data up
to time ¢, N’ the number of considered consecutive accel-
eration sampleg the gravitational acceleration afi¢},,, a

Features threshold. Whether an accelerometer is moving at tican
We consider features extracted from accelerometer @it (  then be formally expressed as

ject UseandAcceleration Statistics) and features constructed
by visually localizing accelerometer®¢vice Locations and

Visual Displacement Satistics).
t

moving(A,t) = - ad)| — gl <T
Accelerometer Localization 9(A1) /\ ([’ = lg] < Tmov)
In order to use visual accelerometer localization for aiytiv

recognition we adapt the approach proposed_in [24]. Ac-

j=t—N’+1
(2)
celerometers are localized in the visual field of a(oc)amera N’ = N* in the experiments reported here. Preliminary

by matching a device's measured acce!)eraﬂQgU : (g evaluation results have shown that recognition perforreanc
...,agfe)v) to the acceleratiod?,, : (a§ ). al )) esti- does not change significantly witki’ # N*.
mated along visual point trajectori@s : ((xﬁo),ygo)),.
(2", 45")). The location in the most recent frame of the vi- Acceleration Statistics _
sual trajectoryP; with strongest similarity is taken to be the  Following the approach of Pham et al._[18] who experi-

device’s location estimate(n%ﬁltgv, ga(lte)'u) _ (mgt) : ygt))_ The mented with various classifiers in the context of recogigjzin

similarity betweend ., and.A, . is estimated incrementally ~ food preparation actions involving four utensils, we estra

with a temporal decay: the statistical features mean, energy, staljdard dgwandn
entropy for each of the three axes and estimate pitch and roll
from four temporal subwindows. These subwindows have

a length of 32 samples each and are evenly spaced within

cey

Sy(Adew, AS;,) =1 [[aP| > Tipe A |a§ltgv| > Tioe the temporal window. Pitch and roll encode the device’s ori-
. entation relative to the direction of gravity and can be-esti
+ - Si—1(Adev, Ay 1) mated from accelerometer data because the data represents

proper acceleration (relative to free fall). The yaw angle-c
not be recovered from accelerometer data because the yaw
angle describes rotation around the axis that is alignell wit
the direction of gravity. The concatenation of these fesgur
) _ results in a vector of 20 dimensions for each device. We
celerationfa,,, | has to exceedi,.. Therefore, the location  oncatenate the feature vectors extracted from all devices
estimates{:%&?u, gjffe),u) drifted away from the target when the  resulting in a feature vector with 140 dimensions.
device measured no acceleration and the point traje@ery
changed its location. This becomes problematic when the
device does not move arfé} tracks the motion of other ob-
jects in the scene.

This method does not require any learning and provides good
localization results for devices that exhibit strong aeca!
tion. ForS; to differ significantly fromsS;_; the device ac-

Device Locations

Assuming that accelerometers are attached to objects that
participate in an activity of interest their visual trajeges
e . _._are likely to be distinctive for the activity that is perfoech

The. modification we propose here detects vyher;)a ((jgwce 'Swit_h those objects. Therefore, we propose to visu:_:llly lo-
stationary and temporarily stores the Iocatl_c(n;é 2Ys’) calize accelerometers and use accelerometer locations and
of all point trajectoriesP; together with the similarity val-  rajectories as features for activity recognition. In cast

ues Sy (Adeo, Ay,;). When the device is detected to move g yisual object tracking which is an extremely challeng-

again the similarity of a point trajectory is initialized i jng problem in itself, localizing accelerometers attached
the values; (Aqe., Aj;,) corresponding to the closest loca-  gpjects enables object tracking without making assumgtion
tion (x§t>,y§t>) in the current frame. about an object’s appearance. Using the accelerometer lo-



calization algorithm, we construct a feature vector forreac showed that more complex classifiers did not improve recog-
video frame containing the estimated 2D location of each nition performance. In order to deal with unbalanced train-

device in camera coordinates. ing data, the contribution of samples from different classe
to (i) information gain and (ii) class distributions in theaf
Visual Displacement Statistics nodes are weighted differently. The weight of a sample from

We estimate statistical features (mean, energy, stanagard d classc is set to be inversely proportional to the number of
viation, entropy) for the visual displacement components, samples:. from that class in the training set:

(Azx, Ay), of the point trajectory that is matched to an ac-

celerometer using the accelerometer localization algorit

These features, extracted from a fixed temporal window of we = mazy (ny) /e (4)

16 video frames along all accelerometer trajectories,@mne ¢

catenated to form a single feature vector characterisiag th o . - .
visual motion of all devices. The resulting feature vectas h In the limit of an infinite number of training samples this ap-

56 dimensions (8 features per device for 7 devices). proach is equal to stratification, i.e., selecting an equain
ber of samples per class.

Classification

In this paper we consider the naive Bayes and the random
decision forest classifiers. Naive Bayes is used to generate
baseline recognition results to which more complicates-cla
sifiers can be compared. Random decision forests are nonj
linear classifiers that naturally extend to multi-classsia
fication and produce well calibrated posterior probaleiti
These characteristics make this classifier favorable coadpa
to the popular support vector machine (SVM) [3].

In the inference stage a feature vector traverses all tteds s

ing at the root node, descending to the next node depending
on the evaluation of the weak classifiers in the current node
on the test sample. The class distributions of the destinati
leaf nodes are summed and normalized yielding a posterior
distribution over activity classes given the test sample.

The meta-parameters of a random forest specifying (i) the
number of decision trees, (ii) the maximum depth of each
tree, (iii) the number of randomly selected features tested
in each node, and (iv) the number of thresholds tested per
feature need to be set prior to forest training. We attempt
to find good values for these parameters through model se-
lection. Automatic model selection involves choosing the
model that minimizes a loss-function. As our random forests
select features for each node to maximize information gain,
i the cross-entropy error is used as the loss-function forahod
H (0k[c) (3) comparison. The cross-entropy error for a single datapoint
k=1 is defined as

Naive Bayes Classifier

Naive Bayes assumes independence of the observations
(01,...,0x)T conditioned on the class. MAP classification
selects the class that maximizes the posterior:

P(clo) o P(olc) P

This assumption is often poor, e.g., a glass and a spoon are

likely to move simultaneously when mixing a salad dress-

ing. Probabilities are modeled with binomial distributon Zp loga
for Object Use and with Gaussian distributions for all other

features and feature combinations.

)) = —loga(p(cgtl0),  (5)

wherep(c) is the ground-truth class distribution (delta-func-
Random Decision Forest tion with peak at true class labe};) andg¢(c) is the class
A random forest is an ensemble of random decision trees, Posteriorp(c|o) estimated by the recognition algorithm. In
where each tree is trained in isolatioh [3]. Each interndeno  this special case the sum only contains a single non-zero el-
of a decision tree represents a weak classifier in the form of aément, which is the log of the estimated probability for the
binary decision function. Starting at the root node, aramdo ground-truth class. We compute the per class cross-entropy
subset of the set of weak learners is selected. This randonerror and sum over all classes in order to obtain a single per-
subset of features is evaluated in combination with a small formance measure given il (6).
number of randomly selected thresholds against the informa
tion gain criterion. The weak classifier with highest infam
tion gain on the training data for this node is selected. The
weak classifier divides the training data into two partigion Hin = Z T Z (pi- a1) 6)
The left and right child node are subsequently trained based ipile
on their respective training data partitions. Leaf nodesest
the distribution of training samples arriving in a given Bod  Since cross-entropy is estimated from cross-validatioarit
over classes. We use axis-aligned weak classifiers, whichbe regarded as a random variable with fluctuation around
simply compare the value of a single dimension of a feature the mean. Treating model-selection as a regression problem
vector with a threshold. Using more complex classifiers in with cross-entropy as its error function, we handle the-bias
the tree nodes is associated with a significantly higher com-variance trade-off by selecting the model that minimizes
putational cost for training. Preliminary evaluation ésu  mean(H,,)? + variance(H,,).

=1



Fusion Methods B
In addition to combining information from accelerometers | Feature Type | Comb. || Precision Recall
and video data through accelerometer localization to ektra
Device LocationsandVisual Displacement Statistics, we con-
sider fusion at feature level by concatenating feature vec- | OU - 0.41+ 0.03| 0.484 0.02
tors (early fusion) and fusion at classifier level (late Gui DL AL 0.26+0.02| 0.22+ 0.03
For classifier fusion we tried the sum-rule and the product- | VS AL 0.524+ 0.05| 0.49+ 0.04
rule [11] as well as Random Decision Forests as a non-linear | AS - 0.62+ 0.05| 0.64+0.04
combination method.
Evaluation OU +DL Early || 0.51+0.03| 0.51+ 0.02
Following the quantitative evaluation in Pham et alJ[18] we | OU +VS Early | 0.54+0.02] 0.53+0.04
use a temporal window of 256 accelerometer samples for OU +AS Early 0.63+0.05| 0.66+0.03
estimatingAcceleration Satistics. For Visual Displacement DL +VS Early | 0.5740.04} 0.54+0.03
Satistics a temporal window of 16 video frames was used, a 2; : '\A}g Eg:g 82%; 882 82?; 883
trajectory length commonly used for visual action recogni- : . : .
ton 28], g 9" 1 ou+AS+vs| Early | 0.67+0.05| 0.68+0.03
For random forests model selection we searched for a good
model with 20 trees, the valu¢s, 10, 12} for the maximum OU +DL Sum | 0.43+0.02| 0.49+ 0.03
number of tree levels{id, 2d,d} for the number of weak Product| 0.45+ 0.02| 0.50+ 0.02
classifiers tested per node (wheres the number of feature
dimensions) and 10 thresholds per weak classifier. OU +VS Sum 0.51+0.03| 0.53+0.03
Product| 0.52+ 0.03| 0.53+ 0.03

Results _ OU +AS Sum | 0.43+0.07| 0.49+ 0.03
The naive Bayes classifier did not perform better than chance

; ; . Product| 0.44+ 0.02| 0.50+ 0.03
on features other thabbject Use andDevice Locations. Us-
ing Object Use gave a respectable recognition performance | o 4 yg Sum 0.49+ 0.05| 0.51+ 0.03
of 0.42£0.01 precision and.48- 0.02 recall, intervals rep- Productl 0.52+ 004! 051+ 0.04
resenting one standard deviation. This result indicatas th
_the mvo_lvement of objects in an activity regar_d!ess of thei DL + AS Sum 0.59+ 0.05| 0.64+ 0.03
interactions _|s.a_1lready a strong cue foy recognizing foad pr Productl 0.61=+ 0.05| 0.64=+ 0.04
paration activities. Scaling a recognition system beyond a
single recip_e, how_e\_/t_ar, v_vould_drastical!y increase thenum | ag 4 ys Sum 063+ 0.04| 067+ 0.03
per of.p055|ble activities qulvmg any smglle opject,uien Product! 0.65+ 0.03| 0.67+ 0.03
ing this type of feature less informative. Wilbevice Loca-
tionsthe Naive Bayes classifier achieved4 =+ 0.02 preci- OU + AS + VS| Sum 0.62-+0.04| 0.65+ 0.02
sr;on a;}to.14¢0.01 recall. The onv p(_arform.an?:elmay mc?catﬁ_ Productl 0.64=+ 0.03| 0.66+ 0.03
that the naive Bayes assumption is particularly poor fa thi RE 0.65+ 0.05| 0.67+ 0.03
type of feature or that device locations are not discrinmeat

for distinguishing food preparation activities.

. . . . Table 2. Activity recognition performance (mean precisionand mean
The recognition results obtained with various features, fu recall) achieved with various features, fusion methods andkandom

sion methods and Random Forest classifiers are shown inForest classifiers. Intervals represent: one standard deviation. De-
Tab|d2 The top section shows the recognition performancevice LOCB.t‘iOHS (DL) and Visual Displace_ment Statistic_s (Vpuse multi-
for individual feature types, including two types that rely modal fpsmn by accelerometer localization. Early fusion efers to con-
. . . - catenating feature vectors. Sum, product and RF (random foest) in-
multi-modal fusion using accelerometer localization. The gicate classifier combinations by aggregating class posfer distribu-
middle section (Combination: Early) shows recognition-per tions. AL: accelerometer localization, AS: Acceleration Satistics, DL:
formance with fusion at feature level, i.e. concatenatibn o Device Locations, OU: Object Use, RF: Random Forest, VS: Visal
feature vectors. The bottom section shows recognition per- Displacement Statistics.
formance achieved through combining posterior classidistr
butions obtained by classification based on individual fea-
ture types. fication but was still lowest among all configurations tested
with random forest classifiers. This illustrates that otgec
Applying a random forest classifier Object Use features are positioned quite freely on the work surface and that thei
did not improve recognition performance over the baseline locations do not provide strong cues for activity recogmiti
results obtained with the naive Bayesian model (not shown even in this dataset where all sequences were recorded in
in the Table). This indicates that the naive Bayes assumptio a single (confined) kitchen setup involving the same uten-
is good for this type of feature. Recognition accuracy for sils. The performance usingcceleration Satistics of 0.62

Device Locationsincreased compared to naive Bayes classi- precision and).64 recall was the best among all individual



- ‘§ 3 8 E was above 50%, except for thiéU L_L-activity (42%) and
8§ 3 £ 3 E %I o 3 miz_ingredients (49%). Considering the high intra-class
= g 8 g 23 2 .‘él 5 variability and the fact that no temporal activity modegjin
T ¢ § oL EI o g % was used these results are very promising. As the pre- and
S W T £ £ Q o o &\

post-phases of activities involve re-organizing objectthe
work surface, there is significant confusion betw@&li L L

and all other activities. The large spoon was often used
to carry out themix_ingredients and serve_salad activ-
ities. As the way the large spoon was moved during these
activities was also very similar they were frequently con-
fused. The noticeable confusion betweeit_into_pieces

and place_into_bowl may be due to the knife often being
used to scrape chopped ingredients off the chopping board

give_pepper
dress_salad
mix_dressing
mix_ingredients
peel_cucumber
cut_into_pieces
place_into_bowl

serve_salad 70 into the bowl. Stronger motion features or a representation
of spatial relations between objects might help distinguis
Figure 3. Confusion Matrix for the method that achieved highest ac- these activities.

tivity recognition accuracy among all configurations congiered in Ta-
ble[2. A random forest classifier was trained on concatenate®bject
Use, Acceleration Statistics and Visual Displacement Stiatics features DISCUSSION & CONCLUSION

(early fusion). Rows and columns represent ground-truth ad pre- In this paper we introduced a challenging dataset of food
dicted céasslllabels,lres;I:Je(I:_uverI. Numbélersf represent fff“?”%'/eséT e preparation activities with a novel combination of videaan
S, (Svehitg;f‘y' evels linearly encode frequencies frord% (black) accelerometers attached to kitchen objects. The dataset co

tains complex interactions of multiple objects and may be
used to investigate a wide range of recognition problems.

feature types. This result confirms that acceleromter<base d hod f bini id d
activity recognition can yield good performance using fea- W? proposed a nfew method for com u;}mg Vlh €o and ac-
tures that are fast to exiract from the temporal domain and C€lerometer data for activity recognition through acase:
require no learning as proposed N][19]. The lower perfor- eter Iocallzatlon.._Thls approach and pther methods for fus-
mance oMisual Displacement Satistics compared toAccel- ing these modalities were comparatively evaluated on the
eration Statistics can be attributed to the shorter temporal N€W dataset. Features encoding object use showed consider-
window used for feature extraction (0.53s compared to 5.12s2Ple discriminative power. Similar information might have
for Acceleration Statistics) and imperfect localization been obtained using RFID tags as an alternative to acceler-
' ometers. However, with a recognition accuracy below 50%

The combination of different features prior to classifioati It IS clearly insufficient to solely rely on this type of fea-
(Combination: Early)in Tabl@2 consistently improved rgco  tureé. Motion features extracted from accelerometer data pr
nition performance compared to the individual feature gype  Vided the strongest cues among individual feature types in-
and the observed performance increase was statisticgy si Vestigated. However, by fusing data from different sensor
nificant in all cases except for the combinationdvice types via accelerometer localization and by combining fea-
Locations with Acceleration Satistics. These observations  tUres prior to classification we were able to significantly im
strongly support the hypothesis that robust activity resog ~ Prove recognition performance. These results highliget th
tion benefits from integrating multiple types of cues. Com- Potential for multi-modal recognition approaches. Notth
bining classifier outputs using the sum-rule or the product- the choice of activities we used for evaluation here was de-
rule only showed minor improvement compared to the indi- loérately made to exclude important factors such as the ma-
vidual feature types. Note, however, that inference in-deci Nipulated ingredients. If we had set out the task to differen
sion forests trained on combined features is faster by arfact tiate between different ingredients being cut into pieces o
K than combining classifier outputs &f feature types. placed into the bowl, additional (visual) features would be
necessary to robustly recognize such activities. We expect
We also experimented with a non-linear combination of clas- that the integration of visual information will be even more
sifier outputs using random forests. Due to the computation- Peneficial for reasoning about interactions between mialtip
ally demanding model selection, we only ran these exper- entities such asoving the chopped tomato from the chop-
iments on the combination of features that achieved high- Ping board into the bow.
est recognition accuracy with early fusion. Here, recogni-
tion accuracy is not significantly different from that oltd ACKNOWLEDGEMENTS
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tures is illustrated in Figurld 3. This configuration achikve

highest activity recognition accuracy among all configura-

tions considered in Tablg 2. For almost all activities recal
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